Inhaled oxygen: a brain MR contrast agent?

AJNR Am J Neuroradiol

Hôpital Neurologique et Neurochirurgical, Lyon, France.

Published: March 1996

Oxygen inhalation led to subtle but readily detectable changes on T2*-weighted images with a conventional MR imager at 1.5 T. We attribute the increase in local signal intensity to changes in blood oxygenation, in particular to a net conversion of deoxyhemoglobin to oxyhemoglobin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8337213PMC

Publication Analysis

Top Keywords

inhaled oxygen
4
oxygen brain
4
brain contrast
4
contrast agent?
4
agent? oxygen
4
oxygen inhalation
4
inhalation led
4
led subtle
4
subtle detectable
4
detectable changes
4

Similar Publications

Background: As iatrogenic hyperoxia has been related to adverse outcomes in critically ill patients, guidelines advise to titrate oxygen to physiological levels. In the prehospital setting where partial arterial oxygen (PaO) values are often not readily available, titration of oxygen is based on peripheral oxygen saturations (SpO2). In this study we aimed to investigate the efficacy of SpO guided oxygen titration in the prevention of hyperoxia.

View Article and Find Full Text PDF

Typical waveforms used for the simulation of pressure and volume-controlled ventilation in medical ventilators have been extensively studied in the literature. The majority of simulation studies reported employ the step pattern or ramp pattern to model the pressure and flow variations in pressure/volume-controlled ventilation. It was observed that the above waveforms tend to add to the discomfort level of patients due to the presence of jerks in derivatives of pressure/flow variations; the pressure/flow variation of air and oxygen mixture should be smooth so that the patient discomfort is kept at a minimal level.

View Article and Find Full Text PDF

Background: It is not yet clear to what extent the physiological regulatory mechanisms that maintain core body temperature are reflected by changes in resting energy expenditure (REE). Particularly in indirect calorimetry with a canopy, the effects of short-term temperature exposures have not yet been investigated. This can be of relevance for the determination of REE in practice.

View Article and Find Full Text PDF

Inhalable DNase I@Au hybrid nanoparticles for radiation sensitization and metastasis inhibition by elimination of neutrophil extracellular traps.

Biomaterials

January 2025

Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China. Electronic address:

High-dose radiation therapy is a widely used clinical strategy to inhibit tumor growth. However, the rapid generation of excessive reactive oxygen species (ROS) triggers the formation of neutrophil extracellular traps (NETs), which capture free tumor cells in the bloodstream, promoting metastasis. In this study, we developed a hybrid nanoparticle composed of DNase I and gold (DNase I@Au) to enhance radiotherapy efficacy while mitigating metastasis by precisely eliminating NETs.

View Article and Find Full Text PDF

Key Clinical Message: Although the symptoms of accidental chlorine inhalation are typically mild, severe exposure can result in acute respiratory distress syndrome (ARDS). We present a case of pediatric ARDS due to chlorine exposure in which lung lavage and exogenous surfactant were successful in avoiding more invasive and costly treatments.

Abstract: Chlorine inhalation as a result of swimming pool chlorination accidents is relatively common.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!