BIMT 17 (1-[2-[4-(3-trifluoromethyl phenyl) piperazin-1-yl] ethyl] benzimidazol- [1H]-2-one), a 5-HT1A receptor agonist/5-HT2A receptor antagonist (see Borsini et al., accompanying paper), in a dose range of 1-10 mg/kg i.v., dose-dependently inhibited the electrical activity of rat medial prefronto-cortical neurons, whereas buspirone, in a dose range of 0.1-1000 micrograms/kg, increased it. 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and 1-[2-(2-thenoylamino)ethyl]-4-[1-(7-methoxynaphthyl)] piperazine (S 14671) presented biphasic patterns of response; they increased electrical activity at doses in the range of 0.1-10 micrograms/kg and 0.1-3 micrograms/kg i.v. respectively, and reduced it at high doses, 30-300 micrograms/kg and 10-30 micrograms/kg i.v., respectively. The inhibitory effect of BIMT 17 on the firing rate of neurons in the frontal cortex was antagonized by the 5-HT1A antagonists tertatolol and WAY 100135, and was still present after destruction of serotonin (5-HT) containing neuronal endings by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT; 150 micrograms/rat, given intraventricularly), which reduced the cortical 5-HT content by 85%. This destruction of 5-HT neurons, while suppressing the ability of 8-OH-DPAT to inhibit the firing rate at high doses, did not change the excitatory action of this compound at low doses. The addition of ritanserin, a 5-HT2A receptor antagonist, potentiated both the excitatory and inhibitory effects of 8-OH-DPAT on neuronal electrical activity. Direct microiontophoretic application (100 nA/20 s) of 5-HT and BIMT 17, but not that of 8-OH-DPAT, onto medial prefronto-cortical neurons, decreased the firing rate of these neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00168558 | DOI Listing |
J Agric Food Chem
January 2025
Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94158, United States.
Pesticides, including insecticides, are indispensable for large-scale agriculture. Modulating chloride ion channels has proven highly successful as a mode of action (MoA) for insect management. Identifying new ligands for these channels affords opportunities for the potential development of new insecticide products.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, USA.
Intra-abdominal sepsis is a life-threatening complex syndrome caused by microbes in the gut microbiota invading the peritoneal cavity. It is one of the major complications of intra-abdominal surgery. To date, only supportive therapies are available.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Background: The expression of anti-programmed cell death ligand-1 (PD-L1) in tumors is widely used as a biomarker to predict the therapeutic efficacy of anti-programmed cell death-1(PD-1)/PD-L1 antibodies. However, the predictive accuracy of this method is limited. High-mobility group box 1 (HMGB1) is known to modulate cancer immunity.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan.
Epidemiological studies suggest an increased risk of colorectal cancer (CRC) aggravation in patients with chronic kidney disease (CKD). Our previous study demonstrated that indoxyl sulfate, a uremic toxin whose concentration increases with CKD progression, exacerbates CRC through activation of the AhR and Akt pathways. Consequently, indoxyl sulfate has been proposed to be a significant link between CKD progression and CRC aggravation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!