Using two sets of nucleotide sequences of the human and simian T-cell leukemia/lymphoma virus type I (HTLV-I/STLV-I), one consisting of 522 bp of the env gene from 70 viral strains and the other a 140-bp segment from the pol gene of 52 viral strains, I estimated cladograms based on a statistical parsimony procedure that was developed specifically to estimate within-species gene trees. An extension of a nesting procedure is offered for sequence data that forms nested clades used in hypothesis testing. The nested clades were used to test three hypotheses relating to transmission of HTLV/STLV sequences: (1) Have cross-species transmissions occurred and, if so, how many? (2) In what direction have they occurred? (3) What are the geographic relationships of these transmission events? The analyses support a range of 11-16 cross-species transmissions throughout the history of these sequences. Additionally, outgroup weights were assigned to haplotypes using arguments from coalescence theory to infer directionality of transmission events. Conclusions on geographic origins of transmission events and particular viral strains are inconclusive due to small samples and inadequate sampling design. Finally, this approach is compared directly to results obtained from a traditional maximum parsimony approach and found to be superior at establishing relationships and identifying instances of transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025550DOI Listing

Publication Analysis

Top Keywords

viral strains
12
human simian
8
simian t-cell
8
t-cell leukemia/lymphoma
8
leukemia/lymphoma virus
8
virus type
8
gene viral
8
nested clades
8
cross-species transmissions
8
transmission events
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!