Joule heating has long been considered the principal component of tissue damage in electrical injury. Recent studies suggest electroporation, a nonthermally mediated mechanism of cell membrane damage, is also a factor. We investigated whether electroporation-mediated muscle necrosis can occur in vivo without significant Joule heating. Pulsed electric fields approximately 150 V/cm were produced in the hind limbs of anesthetized rats. In shocked limbs core muscle temperature rose less than 1.8 degrees C, yet significant damage occurred as determined by technetium-99m pyrophosphate uptake, elevated serum creatine phosphokinase, and prominent hypercontraction band degeneration of myofibers on histopathologic examination. This study is significant because it directly addresses whether nonthermal mechanisms of cell damage can cause tissue necrosis. These results indicate that electroporation effects can mediate skeletal muscle necrosis without visible thermal changes. Thus the phenomenon of "progressive recognition" may be characteristically largely explained by the occurrence of nonthermally mediated tissue damage.
Download full-text PDF |
Source |
---|
J Environ Manage
January 2025
Interdisciplinary Research Center for Construction and Building Materials, Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia. Electronic address:
Mercury (Hg) pollution poses a critical threat to human health and the environment, necessitating urgent control measures. This study introduces a novel modification method for the common zero-valent iron-carbon (ZVI-AC) galvanic cells using a two-step process, nonthermal (NTP) irradiation followed by targeted functionalization, aiming to enhance Hg adsorption potential by adjusting the physicochemical properties of the cells. The NTP irradiated functionalized adsorbent demonstrated superior Hg adsorption performance across various concentrations and pH variations.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
January 2025
Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan.
Purpose: This study aimed to compare systemic immune responses and metastatic effects induced by radiofrequency ablation (RFA) and irreversible electroporation (IRE) in murine tumor models. We assessed cytokine production, growth of treated and untreated metastatic tumors, and synergy with immune checkpoint inhibitors (ICIs).
Materials And Methods: Hep55.
Food Res Int
January 2025
College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, PR China. Electronic address:
Photodynamic inactivation (PDI) has emerged as a novel non-thermal process technology for inactivating microorganisms due to its low cost, safety, and efficiency. This study aimed to investigate the antimicrobial effect of VK-mediated PDI against Pseudomonas fluorescens (P. fluorescens) and to assess its impact on the quality of the blunt bream contaminated with P.
View Article and Find Full Text PDFClin Exp Otorhinolaryngol
January 2025
Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
Objective: High recurrence rates in head and neck squamous cell carcinoma (HNSCC) significantly affect prognosis, especially in radioresistant HNSCC (RR-HNSCC). Nonthermal plasma (NTP) therapy can effectively suppress the progression of HNSCC; however, the therapeutic mechanism of NTP therapy for RR-HNSCC remains unclear. In this study, we investigated the regulatory role of NTP in the RR-HNSCC signaling pathway and identified its signature genes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Green ammonia synthesis using fluctuating renewable energy supply in decentralized process is a goal that has been long sought after. Ammonia synthesis with non-thermal plasma under mild conditions is a promising technology, but it faces the critical challenge of low energy efficiency. Herein, we develop an easily-scalable AuCu/Cu catalyst, which consists of a decimeter-scale metallic Cu antenna and nano-scale AuCu catalytic sites on metallic Cu surface, significantly enhancing the energy efficiency and ammonia yield in a radio-frequency (RF) plasma system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!