The nuclear vitamin D receptor (VDR) binds the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]hormone with high affinity and elicits its actions to regulate gene expression in target cells by binding to vitamin D-responsive elements (VDREs). VDREs in positively controlled genes such as osteocalcin, osteopontin, beta 3-integrin, and vitamin D-24-OHase are direct hexanucleotide repeats with a spacer of three nucleotides. The VDR associates with these VDREs with the greatest affinity as a heterodimer with one of the family of retinoid X receptors (RXRs). VDR consists of an N-terminal zinc finger domain that determines DNA binding, a "hinge" segment and a C-terminal hormone binding domain which also contains two conserved regions that engage in heterodimerization with an RXR on the VDRE. The role of the 1,25(OH)2D3 ligand in transcriptional activation by the VDR-RXR heterodimer is to alter the conformation of the hormone-binding domain of VDR to facilitate strong dimerization with RXR, which results in ligand-enhanced association with the VDRE. Thus RXR is recruited into a heterocomplex by liganded VDR. The natural ligand for the RXR coreceptor, 9-cis retinoic acid, suppresses both VDR-RXR binding to the VDRE and 1,25(OH)2D3-stimulated transcription, indicating that 9-cis retinoic acid diverts RXR away from being the silent partner of VDR to instead form RXR homodimers. Recent data reveal that after binding RXR, a subsequent target for VDR in the vitamin D signal transduction cascade is basal transcription factor IIB (TFIIB).(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1016/8756-3282(95)00205-rDOI Listing

Publication Analysis

Top Keywords

9-cis retinoic
8
retinoic acid
8
vdr
7
rxr
7
vitamin
5
binding
5
understanding molecular
4
molecular mechanism
4
mechanism receptor-mediated
4
receptor-mediated genomic
4

Similar Publications

Secondary upper limb lymphedema is easy to occur after breast cancer surgery, for which treatment is limited. 9-cis-retinoic acid (9-cisRA) has been demonstrated to increase lymphangiogenesis without enhancing tumor metastasis but has the disadvantages of poor water solubility, easy decomposition in light, unstable to heat, and short half-life. Based on this, 9-cisRA-Lip with a particle size of roughly 143 nm and high dispersibility was prepared by thin-film dispersion method and verified by Malvern Laser Particle Size Analyzer and electron microscopy.

View Article and Find Full Text PDF

Alternative splicing is an FXRα loss-of-function mechanism and impacts energy metabolism in hepatocarcinoma cells.

J Biol Chem

November 2024

Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63009 Clermont-Ferrand, France. Electronic address:

Farnesoid X receptor α (FXRα, NR1H4) is a bile acid-activated nuclear receptor that regulates the expression of glycolytic and lipogenic target genes by interacting with the 9-cis-retinoic acid receptor α (RXRα, NR2B1). Along with cofactors, the FXRα proteins reported thus far in humans and rodents have been observed to regulate both isoform (α1-4)- and tissue-specific gene expression profiles to integrate energy balance and metabolism. Here, we studied the biological functions of an FXRα naturally occurring spliced exon 5 isoform (FXRαse5) lacking the second zinc-binding module of the DNA binding domain (DBD).

View Article and Find Full Text PDF

Colon adenocarcinoma is characterized by the downregulation of the retinoic acid receptor, making natural retinoids such as all-trans retinoic acid, 9-cis retinoic acid and 13-cis retinoic acid effective in treatment and chemoprevention due to their ability to increase RARβ expression. However, major limitations to their use include tolerability and acquired resistance. In this study, we evaluated fenretinide, a semisynthetic derivative of all-trans retinoic acid, in an HT-29 cell line.

View Article and Find Full Text PDF
Article Synopsis
  • The activation of nuclear retinoid X receptors (RXRs) involves releasing corepressors and recruiting coactivators, influencing gene activation or repression.
  • Research identified a synthetic agonist that significantly increases the binding of PGC1α (a coactivator) to RXR, unlike the natural ligand 9-cis retinoic acid.
  • The study produced three related RXR agonists with varying abilities to enhance PGC1α recruitment, suggesting potential new therapies through targeted RXR-PGC1α interactions via selective coregulator modulation.
View Article and Find Full Text PDF
Article Synopsis
  • Aldehyde dehydrogenases of the 1A subfamily (ALDH1A) are key enzymes that convert retinal into retinoic acid (RA), which is crucial for various bodily functions including development, reproduction, and immune response.* -
  • ALDH1A3, a specific isoform of ALDH1A, plays a significant role in cancers like glioblastoma multiforme and mesothelioma, where its levels are linked to poor patient prognosis due to increased tumor growth and resistance to treatment.* -
  • Recent research is focused on creating selective inhibitors for ALDH1A3 as a cancer therapy and developing specific fluorescent markers for better surgical resection of tumors.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!