Low pH enhances tumor necrosis factor alpha (TNF)-induced cytolysis of cancer cells and TNF-membrane interactions that include binding, insertion, and ion-channel formation. We have also found that TNF increases Na+ influx in cells. Here, we examined the structural features of the TNF-membrane interaction pathway that lead to channel formation. Fluorometric studies link TNF's acid-enhanced membrane interactions to rapid but reversible acquisition of hydrophobic surface properties. Intramembranous photolabeling shows that (i) protonation of TNF promotes membrane insertion, (ii) the physical state of the target bilayer affects the kinetics and efficiency of TNF insertion, and (iii) binding and insertion of TNF are two distinct events. Acidification relaxes the trimeric structure of soluble TNF so that the cryptic carboxyl termini, centrally located at the base of the trimer cone, become susceptible to carboxypeptidase Y. After membrane insertion, TNF exhibits a trimeric configuration in which the carboxyl termini are no longer exposed; however, the proximal salt-bridged Lys-11 residues as well as regional surface amino acids (Glu-23, Arg-32, and Arg-44) are notably more accessible to proteases. The sequenced cleavage products bear the membrane-restricted photoreactive probe, proof that surface-cleaved TNF has an intramembranous disposition. In summary, the trimer's structural plasticity is a major determinant of its channel-forming ability. Channel formation occurs when cracked or partially splayed trimers bind and penetrate the bilayer. Reannealing leads to a slightly relaxed trimeric structure. The directionality of bilayer penetration conforms with x-ray data showing that receptor binding to the monomer interfaces of TNF poises the tip of the trimeric cone directly above the target cell membrane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC40023 | PMC |
http://dx.doi.org/10.1073/pnas.93.3.1021 | DOI Listing |
J Phys Chem B
January 2025
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China.
PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG).
View Article and Find Full Text PDFJ Bacteriol
January 2025
Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France.
Unlabelled: MFE01 is an environmental bacterium characterized by an hyperactive type 6 secretion system (T6SS) and a strong emission of volatile organic compounds (VOCs). In a previous study, a transposition mutant, 3H5, exhibited an inactive T6SS and altered VOC emission. In 3H5, the interruption of gene by the transposon was insufficient to explain these phenotypes.
View Article and Find Full Text PDFCommun Biol
January 2025
Institute of biology, Plant Physiology Laboratory, Université de Neuchâtel, 2000, Neuchâtel, Switzerland.
Photosynthetic activity is established during chloroplast biogenesis. In this study we used 680 nm red light to overexcite Photosystem II and disrupt photosynthesis in two conditional mutants (var2 and abc1k1) which reversibly arrested chloroplast biogenesis. During biogenesis, chloroplasts import most proteins associated with photosynthesis.
View Article and Find Full Text PDFSci Rep
January 2025
U1008 - Advanced Drug Delivery Systems and Biomaterials, Univ. Lille, INSERM, CHU Lille, Lille, F-59000, France.
This study aimed to compare the failure rates of two different sizes of plates and screws to stabilize critical-sized (7 mm) femoral defects in male Sprague‒Dawley rats (aged 10 weeks). Femoral defects were stabilized with either a 4-hole plate (length 29 mm, thickness 1 mm, 10 rats, Group 1) and 4 cortical screws (diameter 2 mm) or with a 6-hole plate (length 30 mm, thickness 0.6 mm, 9 rats, Group 2) and 4 cortical screws (diameter 1.
View Article and Find Full Text PDFAcinetobacter baumannii is a gram-negative opportunistic bacterium that causes life-threatening infections in immunocompromised hosts. The World Health Organization (WHO) recognizes the high mortality and increasing antimicrobial resistance of A. baumannii and calls for new treatment options.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!