Acetylcholine has been implicated in brainstem mechanisms of cardiac and ventilatory control, arousal, rapid eye movement (REM) sleep, and cranial nerve motor activity. Virtually nothing is known about the developmental profiles of cholinergic perikarya, fibers, terminals, and/or receptors in the brainstems of human fetuses and infants. This study provides baseline information about the quantitative distribution of muscarinic cholinergic receptors in fetal and infant brainstems. Brainstem sections were analyzed from 6 fetuses (median age: 21.5 postconceptional weeks), 4 premature infants (median age: 26 postconceptional weeks), and 11 infants (median age: 53 postconceptional weeks). One child and three adult brainstems were examined as indices of maturity for comparison. The postmortem interval in all cases was less than or equal to 24 hours (median: 10 hours). Muscarinic receptors were localized by autoradiographic methods with the radiolabeled antagonist [3H]quinuclidinyl benzilate ([3H]QNB). Computer-based methods permitted quantitation of [3H]QNB binding in specific nuclei and three-dimensional reconstructions of binding patterns. By midgestation, muscarinic cholinergic receptor binding is already present and regionally distributed, with the highest binding levels in the interpeduncular nucleus, inferior colliculus, griseum pontis, nucleus of the solitary tract, motor cranial nerve nuclei, and reticular formation. During the last half of gestation, [3H]QNB binding decreases in most, but not all of the nuclei sampled. The most substantial decline occurs in the reticular formation of the medulla and pons, a change that is not fully explained by progressive myelination and lipid quenching. Binding levels remain essentially constant in the inferior olive and griseum pontis. Around the time of birth or shortly thereafter, the relative distribution of binding becomes similar to that in the adult, with the highest levels in the interpeduncular nucleus and griseum pontis, although binding levels are higher overall in the infant. In the rostral pontine reticular formation, paramedian bands of high muscarinic binding are present which do not correspond to a cytoarchitectonically defined nucleus. By analogy to animal studies, these bands may comprise a major cholinoreceptive region of the human rostral pontine reticular formation involved in REM sleep. In the human interpeduncular nucleus in all age periods examined, muscarinic binding localizes to the lateral portions bilaterally, indicative of a heterogeneous chemoarchitecture. Muscarinic binding is high in the arcuate nucleus, a component of the putative respiratory chemosensitive fields along the ventral surface of the infant medulla. This observation is consistent with the known effects of muscarinic agents on chemosensitivity and ventilatory responses applied to the ventral medullary surface in animal models. The nonuniform distribution of muscarinic binding in the caudorostral plane in individual brainstem nuclei, as illustrated by three-dimensional reconstructions, underscores the need for rigorous sampling at precisely matched levels in quantitative studies. This study provides basic information toward understanding the neurochemical basis of brainstem disorders involving dysfunction of autonomic and ventilatory control, arousal, and REM sleep in preterm and full-term newborns and infants and for developing cholinergic drugs for such disorders in the pediatric population.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.903620305DOI Listing

Publication Analysis

Top Keywords

reticular formation
16
muscarinic binding
16
binding
13
muscarinic cholinergic
12
rem sleep
12
median age
12
postconceptional weeks
12
binding levels
12
interpeduncular nucleus
12
griseum pontis
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!