Molecular biophysics of elastin structure, function and pathology.

Ciba Found Symp

Laboratory of Molecular Biophysics, School of Medicine, University of Alabama at Birmingham 35294-0019, USA.

Published: March 1996

Owing to the presence of the recurring sequence XPGX' (where X and X' are hydrophobic residues), the molecular structure of the sequences between cross-links in elastin is viewed primarily as a series of beta-turns which become helically ordered by hydrophobic folding into beta-spirals, which in turn assemble hydrophobically into twisted filaments. Both hydrophobic folding and assembly occur when the temperature is raised above Tt, the onset of an inverse temperature transition. Using poly[fv(VPGVG),fx(VPGXG)] (where fv and fx are mole fractions with fv + fx = 1 and X is now any of the naturally occurring amino acid residues), plots of fx versus Tt result in a new hydrophobicity scale based directly on the hydrophobic folding and assembly processes of interest. With the reference values chosen at fx = 1, the most hydrophobic residues of elastin, Tyr (Y) and Phe (F), have low values of Tt, -55 and -30 degrees C, respectively, and the most hydrophilic residues, Glu (E-), Asp (D-) and Lys (K+), have high values of 250, 170 and 120 degrees C, respectively. Raising the average value of Tt for a chain or chain segment from below to above physiological temperature drives hydrophobic unfolding and disassembly; lowering Tt does the reverse. This delta Tt mechanism has been used reversibly to interconvert many energy forms and is used here to explain initiating events of elastogenesis, pulmonary emphysema, solar elastosis and the paucity of elastic fibres in scar tissue. In general, oxidation and/or photolysis convert(s) hydrophobic residues into polar residues with the consequences of irreversibly raising Tt to above 37 degrees C, hydrophobic unfolding and disassembly (fibre swelling), and greater susceptibility to proteolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/9780470514771.ch2DOI Listing

Publication Analysis

Top Keywords

hydrophobic residues
12
hydrophobic folding
12
hydrophobic
8
folding assembly
8
hydrophobic unfolding
8
unfolding disassembly
8
residues
6
molecular biophysics
4
biophysics elastin
4
elastin structure
4

Similar Publications

The stability of α-crystallin, the major protein of the mammalian eye lens and a molecular chaperone, is one of the most crucial factors for its survival and function. The chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn. Each subunit of α-crystallin could bind multiple zinc atoms through inter-subunit bridging and cause enhanced stability.

View Article and Find Full Text PDF

To understand xylan-cellulose interactions in softwood, the adsorption behavior of hexameric softwood xylan proxies with various substitutions was analyzed on the three surfaces of a hexagonal cellulose microfibril. The study found that all surfaces could bind xylan motifs, showing equally high affinity for the hydrophilic (110) and hydrophobic (100) surfaces and significantly lower affinity for the hydrophilic (11̅0) surface. Unsubstituted xylose hexamers had the highest affinity and most ordered adsorption structures, while substitutions generally reduced the affinity and regularity.

View Article and Find Full Text PDF

Food allergens are defined by their stability during digestion, with allergenicity largely influenced by resistance to enzymatic hydrolysis. Ovalbumin (OVA), a major egg protein, is a significant contributor to food allergies, particularly in children. Our previous work demonstrated that high hydrostatic pressure (HHP) treatment reduces OVA allergenicity by disrupting conformational epitopes and altering its structure.

View Article and Find Full Text PDF

The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including . Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase.

View Article and Find Full Text PDF

Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!