Elastic fibres form an extracellular network which provides elasticity and resilience to tissues such as the skin. To study the regulation of human elastin gene expression, we have developed a line of transgenic mice which harbour 5.2 kb of human elastin gene promoter region in their genome. This promoter is linked to the chloramphenicol acetyltransferase (CAT) reporter gene which allows determination of the expression of human elastin promoter in different tissues. The highest CAT activity was found in the lungs and aorta, tissues rich in elastin, while lower levels were detected in a variety of other tissues, including skin. Assay of CAT activity in the lungs of fetal and newborn animals revealed high activity which progressively declined during the postnatal period up to six months. Thus, there was evidence of tissue-specific and developmentally regulated expression of the human elastin promoter activity in these mice. These animals were then used to examine the expression of the elastin gene by a variety of factors which have previously shown to alter elastin gene expression, as determined at the mRNA or protein levels. First, injection of transforming growth factor beta 1 (100 ng) subcutaneously into the transgenic animals resulted in a time-dependent elevation of the promoter activity up to 10-fold after a single injection. Secondly, enhancement of the human elastin promoter activity by interleukin 1 beta injected subcutaneously resulted in an approximately 10-fold elevation of the CAT activity. Finally, subcutaneous injection of these animals with triamcinolone acetonide or dexamethasone, two glucocorticosteroids in clinical use, resulted in marked enhancement of human elastin promoter activity. Similar changes were noted in fibroblast cultures established from the transgenic animals. These data indicate that the 5.2 kb upstream segment of the human elastin gene contains cis-elements which allow tissue-specific and developmentally regulated expression of the human elastin promoter. Furthermore, this segment of the gene contains responsive elements to a variety of cytokines and pharmacological agents. Collectively, these data indicate that elastin gene expression in the skin in vivo can be regulated at the transcriptional level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/9780470514771.ch13DOI Listing

Publication Analysis

Top Keywords

human elastin
36
elastin promoter
24
elastin gene
24
promoter activity
20
elastin
13
gene expression
12
expression human
12
cat activity
12
human
9
promoter
9

Similar Publications

Recently, seaweed extracts have been found to have potential in skin benefits. This study, therefore, aimed to explore phytochemical analysis, antimicrobial, antioxidant, and wound healing properties of brown seaweed ethanolic extract (SPEE) on human skin keratinocyte HaCaT cells and the possible mechanism involved. Our results indicated that SPEE contained flavonoid, phenolic, and carotenoid as the major active constituents.

View Article and Find Full Text PDF

Although microfocused ultrasound with visualization (MFU-V) and calcium hydroxylapatite- carboxymethylcellulose (CaHA-CMC) have their individual strengths and have demonstrated effectiveness in aesthetic improvement and improving skin laxity, a combined treatment may sometimes be required to achieve comprehensive aesthetic enhancements that meet patients' needs and preferences. This review systematically summarizes the available evidence on combined MFU-V and CaHA-CMC treatment. A comprehensive search was conducted in Embase, MEDLINE ALL (Ovid), Web of Science Core Collection, and Cochrane Central.

View Article and Find Full Text PDF

Background: Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS).

View Article and Find Full Text PDF

Objective: This study aimed to investigate the collagen fiber structure of the subcutaneous fascia, a connective tissue layer between the skin and epimysium.

Methods: Fascia samples with varying extensibility were examined using biochemical and microscopic methods.

Results: Loose fascia, the more extensible type, displayed sparsely distributed collagen fibers, while dense fascia showed tightly packed collagen fiber bundles.

View Article and Find Full Text PDF

Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease.

Int Angiol

December 2024

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -

The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!