Interleukin (IL)-2-induced microvascular lung injury is an experimental paradigm commonly used to investigate the pathogenesis of the adult respiratory distress syndrome. Since tumor necrosis factor-alpha (TNF-alpha) is known to induce such an injury in vivo and since TNF-alpha is involved in other models of lung injury, we postulated that it might also mediate pulmonary toxicity after IL-2 administration. The present study tested this hypothesis by evaluating the effect of TNF-alpha inhibition on IL-2-induced lung injury in the rat. Recombinant human IL-2 (10(6) U IV per rat, n = 6) elevated lung water, myeloperoxidase activity, and protein accumulation in bronchoalveolar lavage fluid and induced tissue hypoxia. Also, IL-2 enhanced lung tissue TNF-alpha mRNA and peptide (1543 +/- 496 pg/g lung wet weight) localized to alveolar macrophages by in situ hybridization. In marked contrast, IL-2 failed to affect serum TNF-alpha, which remained at undetectable levels. Pretreatment with anti-TNF-alpha monoclonal antibody (25 mg/kg IV, n = 7) or the TNF-alpha synthesis inhibitor rolipram (200 micrograms/kg IV, n = 7) attenuated lung injury and reverted tissue hypoxia. Furthermore, TNF-alpha inhibition prevented the upregulation of lung tissue IL-1 beta, IL-6, cytokine-induced neutrophil chemoattractant, and E-selectin (ELAM-1) but not intercellular adhesion molecule-1 mRNAs in response to IL-2. These data imply that locally produced TNF-alpha mediates IL-2-induced lung inflammation and tissue injury and point to the potential utilization of TNF-alpha inhibitors in treating the pulmonary toxicity of IL-2 immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.res.78.2.329DOI Listing

Publication Analysis

Top Keywords

lung injury
20
lung
10
tnf-alpha
9
locally produced
8
tumor necrosis
8
necrosis factor-alpha
8
pulmonary toxicity
8
toxicity il-2
8
tnf-alpha inhibition
8
il-2-induced lung
8

Similar Publications

Background: The benefit of mechanical circulatory support (MCS) with Impella (Abiomed, Inc, Danvers, MA) for patients undergoing non-emergent, high-risk percutaneous coronary intervention (HR-PCI) is unclear and currently the subject of a large randomized clinical trial (RCT), PROTECT IV. While contemporary registry data from PROTECT III demonstrated improvement of outcomes with Impella when compared with historical data (PROTECT II), there is lack of direct comparison to the HR-PCI cohort that did not receive Impella support.

Methods: We retrospectively identified patients from our institution meeting PROTECT III inclusion criteria (left ventricular ejection fraction [LVEF] <35% with unprotected left main or last remaining vessel or LVEF <30% undergoing multivessel PCI), and compared this group (NonIMP) to the published outcomes data from the PROTECT III registry (IMP).

View Article and Find Full Text PDF

Objective: We aimed to understand the potential therapeutic and anti-inflammatory effects of the phosphodiesterase-4 (PDE4) inhibitor roflumilast in models of pulmonary infection caused by betacoronaviruses.

Methods: Mice were infected intranasally with murine hepatitis virus (MHV-3) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Roflumilast was given to MHV-3-infected mice therapeutically at doses of 1 mg/kg or 10 mg/kg, or prophylactically at 10 mg/kg.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!