Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stimulation of the leukocyte N-formylpeptide receptor (FPR) induces chemotaxis, cell adhesion, free radical release, and degranulation, responses associated with infection and inflammation. Under conditions where continuous activation of the receptor prevails, neutrophil-dependent tissue damage ensues. Antagonists of the FPR have potential for use as diagnostic and therapeutic agents. Hence, we have synthesized and evaluated a series of amino-terminal carbamate analogues of the peptide Met-Leu-Phe (MLF) in order to determine the structural requirements for imparting agonist or antagonist activity at the human neutrophil FPR. Peptides were evaluated in three in vitro assays: receptor binding, superoxide anion release, and cell adhesion. Unbranched carbamates (methoxycarbonyl, ethoxycarbonyl, and n-butyloxycarbonyl) resulted in agonist activity, whereas branched carbamates (iso-butyloxycarbonyl, tert-butyloxycarbonyl, and benzyloxycarbonyl) were antagonists. The peptide antagonists were more potent inhibitors of superoxide anion release than cell adhesion by 4-7-fold. When iso-butyloxycarbonyl-MLF (i-Boc-MLF) was further modified at the carboxy terminus with Lys, antagonist potency was retained but without functional selectivity. Further C-terminal modification with the radionuclide linker diethylenetriaminepentaacetic acid did not alter the potency of i-Boc-MLFK. These results indicate that the switch from agonist to antagonist activity can be achieved by modifying the overall size and shape of the amino-terminal group; that modifications at both the amino and carboxy termini can alter the functional selectivity of the peptide; and that modifications can be tolerated at the carboxy terminus to allow for development of an antagonist for diagnostic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi952087k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!