Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report here the cloning and sequencing of the gene for proline dehydrogenase (putA) of Bradyrhizobium japonicum. An open reading frame coding for 1,016 amino acids was identified. The B. japonicum gene codes for a bifunctional protein with proline dehydrogenase and pyrroline-5-carboxylate (P5C) dehydrogenase activities, as it does in Escherichia coli and Salmonella typhimurium. Comparison of the sequences of these proteins with other proline and P5C dehydrogenase sequences identified proline dehydrogenase and P5C dehydrogenase catalytic domains. Within the proline dehydrogenation domain, several areas of high identity were observed between B. japonicum, E. coli, S. typhimurium, Saccharomyces cerevisiae put1, and Drosophila melanogaster slgA. Within the P5C dehydrogenase domain, several areas of high identity were observed between B. japonicum, E. coli, S. typhimurium, Bacillus subtilis ipa76d, and S. cerevisiae put2. A consensus catalytic site for semialdehyde dehydrogenase was observed in the P5C dehydrogenase domain. This suggests that the substrate for this domain may be the open-chain gamma-glutamylsemialdehyde, not its cyclized form, P5C. Unlike the gene isolated from E. coli, S. typhimurium, and K. pneumoniae, the B. japonicum putA gene does not appear to be part of an operon with the proline porter gene (putP). Additionally, the B. japonicum gene lacks the putative C-terminal regulatory domain present in the E. coli and S. typhimurium genes. The gene was disrupted by insertion of antibiotic resistance gene cassettes, which were then recombined into the bacterial chromosome. Symbiotically active mutant strains that were devoid of putA activity were isolated. With this proline dehydrogenase clone, we will test the hypothesis that putA in symbiotic nitrogen-fixing B. japonicum bacteroids is transcriptionally regulated by drought and other stresses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC167790 | PMC |
http://dx.doi.org/10.1128/aem.62.1.221-229.1996 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!