In airways epithelial cultures, mechanical stimulation induces intracellular Ca2+ concentration ([Ca2+]i) changes by causing Ca2+ entry and intracellular Ca2+ release. Mechanically induced Ca2+ fluxes across the plasma membrane are blocked by Ni2+ (Boitano, S., M. J. Sanderson, and E. R. Dirksen. J. Cell. Sci. 107: 3037-3044, 1994). In this report we use fluorescence imaging microscopy with fura 2 and intracellular recording of the transmembrane potential to further characterize Ca2+ flux in the plasma membrane of these cells. Mechanically induced Ca2+ influx is blocked by nifedipine. Addition of the dihydropyridine agonist BAY K8644 (2 microM) leads to a delayed increase of [Ca2+]i that is dependent on extracellular Ca2+. Switching to high extracellular K+ concentration ([K+]o) causes depolarization of the plasma membrane and a transient increase in [Ca2+]i. The number of cells that respond to high [K+]o is significantly decreased by Ni2+ (1 mM) or nifedipine (10 microM). Mechanical stimulation causes a rapid depolarization of the stimulated cell that can be suppressed by the K+ ionophore valinomycin. Valinomycin treatment also blocks mechanically induced Ca2+ dux. These results suggest that voltage-sensitive Ca(2+)-conducting channels exist in airway epithelial cells, and these channels contribute to the [Ca2+]i changes observed after mechanical stimulation or depolarization of the plasma membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.1995.269.6.C1547 | DOI Listing |
Sci Rep
December 2024
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.
View Article and Find Full Text PDFNat Commun
December 2024
Nanobiology Institute, Yale University, West Haven, CT, USA.
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Antibody-mediated protection against pathogens is crucial to a healthy life. However, the recent SARS-CoV-2 pandemic has shown that pre-existing comorbid conditions including kidney disease account for compromised humoral immunity to infections. Individuals with kidney disease are not only susceptible to infections but also exhibit poor vaccine-induced antibody response.
View Article and Find Full Text PDFNat Commun
December 2024
Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK.
Lactobacillus species dominance of the vaginal microbiome is a hallmark of vaginal health. Pathogen displacement of vaginal lactobacilli drives innate immune activation and mucosal barrier disruption, increasing the risks of STI acquisition and, in pregnancy, of preterm birth. We describe differential TLR mediated activation of the proinflammatory transcription factor NF-κB by vaginal pathogens and commensals.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!