Hereditary nonpolyposis colorectal cancer (HNPCC) is a common autosomal dominant cancer susceptibility condition. Inherited mutations in at least four DNA mismatch repair genes, hMSH2, hMLH1, hPMS1, and hPMS2, are known to cause HNPCC. In this study we used denaturing gradient gel electrophoresis (DGGE) to screen for hMLH1 mutations in 34 unrelated HNPCC families (30 Dutch, 3 Italian, and 1 Danish). Ten novel pathogenic germ-line mutations (seven affecting splice sites, two frameshifts, and one in-frame deletion of a single amino acid) have been identified in 12 (35%) of these families. In a previous study, hMSH2 mutations were found in 21% of the same families. While the spectrum of mutations at the hMSH2 gene among HNPCC patients appears heterogeneous, a cluster of hMLH1 mutations has been found in the region encompassing exons 15 and 16, which accounts for 50% of all the independent hMLH1 mutations described to date and for > 20% of the unrelated HNPCC kindreds here analyzed. This unexpected finding has a great practical value in the clinical scenario of genetic services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914526PMC

Publication Analysis

Top Keywords

hmlh1 mutations
16
mutations
8
hereditary nonpolyposis
8
nonpolyposis colorectal
8
colorectal cancer
8
unrelated hnpcc
8
hnpcc
5
majority hmlh1
4
mutations responsible
4
responsible hereditary
4

Similar Publications

Methylation status of selected genes in non-small cell lung carcinoma - current knowledge and future perspectives.

Neoplasma

December 2024

Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.

DNA methylation is recognized as an early event in cancer initiation and progression. This review aimed to compare the methylation status of promoter regions in selected genes across different histological subtypes of non-small cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and the rare but highly aggressive large-cell neuroendocrine carcinoma (LCNEC). A comprehensive literature search was conducted in the PubMed database until August 17, 2024, using standardized keywords to identify reports on promoter methylation in NSCLC.

View Article and Find Full Text PDF
Article Synopsis
  • - Ochratoxin A (OTA) is a harmful mycotoxin classified as a possible human carcinogen that can lead to DNA damage, genomic instability, and cell cycle disruptions.
  • - A study on immortalized human gastric epithelial cells (GES-1) revealed that OTA exposure triggers G phase arrest and enhances the expression of DNA repair protein hMLH1, along with phosphorylation of p53 and p21.
  • - Inhibiting hMLH1 with siRNA prevented the activation of the p53-p21 signaling pathway and reversed the G phase arrest caused by OTA, highlighting the critical role of the hMLH1-p53-p21 pathway in this process.
View Article and Find Full Text PDF

Aims: The Lynch syndrome (LS) screening algorithm requires BRAF testing as a fundamental step to distinguish sporadic from LS-associated colorectal carcinomas (CRC). BRAF testing by immunohistochemistry (IHC) has shown variable results in the literature. Our aim was to analyse concordance between BRAF IHC and BRAF molecular analysis in a large, mono-institutional CRC whole-slide, case series with laboratory validation.

View Article and Find Full Text PDF

Genetic predisposition, environmental factors, and infectious agents interact in the development of gastric diseases. (Hp) and Epstein-Barr virus (EBV) infection has recently been shown to be correlated with these diseases. A cross-sectional study was performed on 100 hospitalized Italian patients with and without gastric diseases.

View Article and Find Full Text PDF

DNA mismatch repair system (MMR) is considered a leading genetic mechanism in stabilizing DNA structure and maintaining its function. DNA MMR is a highly conserved system in bacteria, prokaryotic, and eukaryotic cells, and provides the highest protection to DNA by repairing micro-structural alterations. DNA MMR proteins are involved in the detection and repair of intra-nucleotide base-to-base errors inside the complementary DNA strand recognizing the recently synthesized strand from the parental template.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!