Insulin-like growth factors I and II are peptides with a structural homology for proinsulin, and are involved in hepatocyte proliferation. IGF-I and IGF-II, however, have different metabolic roles, and their mechanisms of action are incompletely known. We hypothesized that IGF-I and IGF-II act by different signal transduction pathways. To test this hypothesis, hepatocytes from 200 g male Sprague-Dawley rats were isolated by a two-step collagenase perfusion technique and plated at a density of 10(5) cells/16 mm Primaria plate. Proliferation was measured by [3H]thymidine ([3H]thy) incorporation into DNA, and an autoradiographic nuclear labeling index (LI). To analyze signal transduction, cyclic AMP (cAMP) levels were measured 5 min after addition of reagents by a radioimmunoassay. Reagents (doses) used were: IGF-I (2 nM), IGF-II (2 nM), the inhibitory peptide somatostatin-14 (SS14) (10 nM), and the adenylyl cyclase antagonist dideoxyadenosine (DDA) (10 microM). A summary of the findings is as follows: (1) IGF-I stimulates [3H]thy, LI and cAMP accumulation. (2) IGF-II stimulates [3H]thy and LI but not cAMP; (3) IGF-I but not IGF-II effects are inhibited by SS14 and DDA. We conclude that the hepatotrophic effects of IGF-I and IGF-II occur by different mechanisms: IGF-I is cAMP-dependent, IGF-II is cAMP-independent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0167-0115(95)00058-j | DOI Listing |
Biomolecules
November 2024
Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland.
Cartilage destruction in juvenile idiopathic arthritis (JIA) is diagnosed, often too late, on basis of clinical evaluation and radiographic imaging. This case-control study investigated serum chondroitin/dermatan sulfate (CS/DS) as a potential biochemical marker of cartilage metabolism, aiming to improve early diagnosis and precision treatment for JIA. We also measured the levels of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) (using ELISA methods) in JIA patients ( = 55) both before and after treatment (prednisone, sulfasalazine, methotrexate, administered together), and analyzed their relationships with CS/DS levels.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
December 2024
Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
Context: In most cases of non-islet cell tumor hypoglycemia (NICTH), high molecular weight forms of insulin-like growth factor II, commonly referred to as big IGF-II, cause hypoglycemia. MicroRNA-483 (miR-483), encoded within an intron of IGF2 gene, has been suggested to be co-expressed with IGF-II.
Objective: The aim of this study is to demonstrate the utility and reliability of circulating miR-483 as a biomarker for diagnosis and therapeutic outcome of NICTH.
Clin Endocrinol (Oxf)
February 2025
Department of Pediatric Endocrinology and Genetics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Mol Med
November 2024
URT "Genomic of Diabetes", Institute for Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (IEOS-CNR), Via Pansini 5, 80131, Naples, Italy.
The adipose tissue (AT) surrounding breast cancer (BC) plays a pivotal role in cancer progression and represents an optimal source for new biomarker discovery. The aim of this work was to investigate whether specific AT factors may have prognostic value in estrogen receptor-positive (ER+) BC. Proteoglycan Versican (VCAN), Insulin-like Growth Factor 1 (IGF1), Reticulon 4B (RTN4), chemokines CCL5 (also known as RANTES) and interleukin 8 (IL-8) are expressed in AT and may play important roles in BC progression.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China. Electronic address:
IGFALS forms stable ternary complexes with insulin-like growth factors (IGF1 and IGF2) and IGF-binding proteins (IGFBP3 and IGFBP5), which prolong the half-lives of IGFs. Through immunohistochemical analysis of 90 pairs of clinical samples and bioinformatics analysis, we observed downregulation of IGFALS in hepatocellular carcinoma tissues, which was associated with poor patient prognosis. This prompted us to explore the specific molecular mechanism of action of IGFALS in the inhibition of hepatocellular carcinoma (HCC), which could be a potential new target for the treatment of HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!