Tomato genomic libraries were screened for the presence of simple sequence repeats (SSRs) with seventeen synthetic oligonucleotide probes, consisting of 2- to 5-basepair motifs repeated in tandem. GAn and GTn sequences were found to occur most frequently in the tomato genome (every 1.2 Mb), followed by ATTn and GCCn (every 1.4 Mb and 1.5 Mb, respectively). In contrast, only ATn and GAn microsatellites (n > 7) were found to be frequent in the GenBank database, suggesting that other motifs may be preferentially located away from genes. Polymorphism of microstellites was measured by PCR amplification of individual loci of by Southern hybridization, using a set of ten tomato cultivars. Surprisingly, only two of the nine microsatellite clones surveyed (five GTn, three GAn and one ATTn), showed length variation among these accessions. Polymorphism was also very limited between Lycopersicon esculentum and L. pennelli, two distant species. Southern analysis using the seventeen oligonucleotide probes identified GATAn and GAAAn as useful motifs for the detection of multiple polymorphic fragments among tomato cultivars. To determine the structure of microsatellite loci, a GAn probe was used for hybridization at low stringency on a small insert genomic library, and randomly selected clones were analyzed. GAn based motifs of increasing complexity were found, indicating that simple dinucleotide sequences may have evolved into larger tandem repeats such as minisatellites as a result of basepair substitution, replication slippage, and possibly unequal crossing-over. Finally, we genetically mapped loci corresponding to two amplified microsatellites, as well as nine large hypervariable fragments detected by Southern hybridization with a GATA8 probe. All loci are located around putative tomato centromeres. This may contribute to understanding of the structure of centromeric regions in tomato.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02191823 | DOI Listing |
Phytopathology
January 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
The Institute of Plant Sciences and Genetics, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
Background: Plant breeding research heavily relies on wild species, which harbor valuable traits for modern agriculture. This work employed a new introgression population derived from Solanum pennellii (LA5240), a wild tomato native to Peru, composed of 1,900 genotyped backcross inbred lines (BILs_BC2S6) in the tomato inbreds LEA and TOP cultivated genetic backgrounds. This Peruvian accession was found resistant to the most threatening disease of tomatoes today, caused by the tobamovirus tomato brown rugose fruit virus (ToBRFV).
View Article and Find Full Text PDFNat Plants
January 2025
Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
Precise manipulation of genome structural variations holds great potential for plant trait improvement and biological research. Here we present a genome-editing approach, dual prime editing (DualPE), that efficiently facilitates precise deletion, replacement and inversion of large DNA fragments in plants. In our experiments, DualPE enabled the production of specific genomic deletions ranging from ~500 bp to 2 Mb in wheat protoplasts and plants.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. Electronic address:
Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, is a soil-borne, vascular-colonizing fungal pathogen that severely impacts tomato production in most growing regions worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!