AA-amyloid has been produced experimentally in animal models, allowing the study of mechanisms involved in AA-amyloidogenesis, but those involved in renal AL-amyloidogenesis have not been adequately investigated due, in part, to lack of appropriate in vitro models. Rat and human mesangial cells were grown on a human extracellular matrix (Amgel) derived from normal tissues and on coverslips in the presence of 10 microliters of amyloid enhancing factor (AEF) per milliliter of media and 10 micrograms/ml monoclonal lambda light chains (LCs) obtained from two patients with AL-amyloidosis. Two additional lambda LCs derived from the urine of patients with myeloma and tubulointerstitial renal disease were used as controls. To verify amyloid deposition, light and electron microscopic examination, as well as Congo red and thioflavin T staining, were performed on samples incubated under different experimental conditions. Intracellular and extracellular amyloid was identified in samples incubated for 24 hours with human mesangial cells (for 48 hours with rat mesangial cells), amyloidogenic monoclonal LCs, and AEF. The amount of amyloid detected, which increased with longer incubation times, was found to be most abundant at 14 days. Amyloid was not present in cultures of mesangial cells incubated with amyloidogenic LCs alone or in the absence of mesangial cells. Likewise, incubation of mesangial cells with amyloidogenic LC or AEF separately or amyloidogenic LC in the presence of AEF but without mesangial cells did not result in amyloid formation. Amyloid was not seen when LCs obtained from the urine of patients with tubulointerstitial renal disease were incubated with AEF and mesangial cells. AL-amyloid production requires all three components--mesangial cells, amyloidogenic LCs, and AEF. In addition, amyloid was detected intracellular in mesangial cells, supporting the hypothesis that the production of AL-amyloid in the kidney requires intracellular processing by these cells. This system provides a unique experimental model to study renal AL-amyloidogenesis and a platform to explore mesangial cell-matrix interactions.
Download full-text PDF |
Source |
---|
Int Immunol
January 2025
Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo; Minato-ku, Tokyo 108-8639, Japan.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the production of autoantibodies and damage to multiple organs. Glomerulonephritis, a manifestation involving glomerular deposition of immune complexes and complement components, significantly contributes to disease morbidity. Although the endosomal single-stranded RNA sensor TLR7 is known to drive glomerulonephritis by promoting autoantibody production in B cells, the contribution of macrophage TLR7 responses to glomerulonephritis remains poorly understood.
View Article and Find Full Text PDFMar Drugs
January 2025
Division of Functional Food Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
(), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE-receptor for AGEs (RAGE) interaction. IPA (0.
View Article and Find Full Text PDFHypertens Res
January 2025
Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
Mechanical forces such as glomerular hyperfiltration are crucial in the pathogenesis and progression of diabetic kidney disease. Piezo2 is a mechanosensitive cation channel and plays a major role in various biological and pathophysiological phenomena. We previously reported Piezo2 expression in mouse and rat kidneys and its alteration by dehydration and hypertension.
View Article and Find Full Text PDFClin Exp Nephrol
January 2025
Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China.
Purpose: This study seeks to investigate the fundamental molecular processes through which histone deacetylase 9 (HDAC9) governs the proliferation of glomerular mesangial cells in the context of immunoglobulin A nephropathy (IgAN) and to identify novel targets for clinical research on IgAN.
Methods: Data from high-throughput RNA sequencing for IgAN were procured from the Gene Expression Omnibus database to assess the expression profiles and clinical diagnostic significance of histone deacetylase family proteins (HDACs). Blood samples from 20 IgAN patients were employed in RT-qPCR analysis, and the spearman linear regression method was utilized to analyze the clinical correlation.
World J Diabetes
January 2025
Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.
Aim: To explore the impact of MIZ on diabetic nephropathy (DN).
Methods: Diabetic mice were created using db/db mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!