A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phagosome-lysosome fusion is a calcium-independent event in macrophages. | LitMetric

Phagosome-lysosome membrane fusion is a highly regulated event that is essential for intracellular killing of microorganisms. Functionally, it represents a form of polarized regulated secretion, which is classically dependent on increases in intracellular ionized calcium ([Ca2+]i). Indeed, increases in [Ca2+]i are essential for phagosome-granule (lysosome) fusion in neutrophils and for lysosomal fusion events that mediate host cell invasion by Trypanosoma cruzi trypomastigotes. Since several intracellular pathogens survive in macrophage phagosomes that do not fuse with lysosomes, we examined the regulation of phagosome-lysosome fusion in macrophages. Macrophages (M phi) were treated with 12.5 microM bis-(2-amino-S-methylphenoxy) ethane-N,N,N',N',-tetraacetic acid tetraacetoxymethyl ester (MAPT/AM), a cell-permeant calcium chelator which reduced resting cytoplasmic [Ca2+]; from 80 nM to < or = 20 nM and completely blocked increases in [Ca2+]i in response to multiple stimuli, even in the presence of extracellular calcium. Subsequently, M phi phagocytosed serum-opsonized zymosan, staphylococci, or Mycobacterium bovis. Microbes were enumerated by 4',6-diamidino-2-phenylindole, dihydrochloride (DAPI) staining, and phagosome-lysosome fusion was scored using both lysosome-associated membrane protein (LAMP-1) as a membrane marker and rhodamine dextran as a content marker for lysosomes. Confirmation of phagosome-lysosome fusion by electron microscopy validated the fluorescence microscopy findings. We found that phagosome-lysosome fusion in M phi occurs noramlly at very low [Ca2+]i (< or = 20 nM). Kinetic analysis showed that in M phi none of the steps leading from particle binding to eventual phagosome-lysosome fusion are regulated by [Ca2+]i in a rate-limiting way. Furthermore, confocal microscopy revealed no difference in the intensity of LAMP-1 immunofluorescence in phagolysosome membranes in calcium-buffered vs. control macrophages. We conclude that neither membrane recognition nor fusion events in the phagosomal pathway in macrophages are dependent on or regulated by calcium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120694PMC
http://dx.doi.org/10.1083/jcb.132.1.49DOI Listing

Publication Analysis

Top Keywords

phagosome-lysosome fusion
24
fusion
9
increases [ca2+]i
8
fusion events
8
phagosome-lysosome
7
macrophages
5
[ca2+]i
5
fusion calcium-independent
4
calcium-independent event
4
event macrophages
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!