Objective: To review the literature concerning the regulation of follicle growth, to describe a model for unifollicular ovulation based upon the information gleaned, and to discuss some clinical implications in reproductive endocrinology underscored by this expanding knowledge.
Design: Studies relating to follicular growth in lower animals and primates were reviewed. From the most pertinent articles the individual agents playing a significant role in the regulation of follicle growth were identified along with their mechanisms of action. A model for unifollicular development was proposed based upon the results of the review of these studies. Refinements in the management of some clinical problems in reproductive endocrinology were discussed based upon this model.
Results: From a review of these studies it appears that in the human and primate menstrual cycle one follicle is selected because it has adequate FSH receptors when plasma FSH levels are high. This follicle becomes dominant despite falling FSH levels because of increased sensitivity of the follicle to FSH brought about by intraovarian growth regulators.
Conclusions: Improved care of patients requiring ovulation induction for differing indications should be possible with this more comprehensive knowledge of natural follicle growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0015-0282(16)58077-7 | DOI Listing |
Purpose: To investigate the effects of C-type natriuretic peptide (CNP) on human granulosa cell growth and elucidate its regulatory mechanisms.
Methods: A human non-luteinizing granulosa cell line (HGrC) developed from small antral follicles was used to assess the impact of CNP on cell proliferation and estrogen synthesis. cGMP production via the guanylate cyclase domain of the CNP receptor, natriuretic peptide receptor 2 (NPR2), was confirmed.
Reprod Biol Endocrinol
January 2025
Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, 52621, Israel.
As part of a conventional controlled ovarian hyperstimulation (COH) regimen, final follicular maturation is usually triggered by a single bolus dose of human chorionic gonadotropin (hCG). COH, which combines GnRH antagonist co-treatment with GnRH agonist(GnRHa) trigger, is often used in attempts to eliminate severe early ovarian hyperstimulation syndrome and to improve oocyte/embryo yield and quality. Recently, the combination of GnRHa, with hCG trigger has also been implemented into clinical practice.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes.
View Article and Find Full Text PDFBr J Dermatol
January 2025
Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
The ability to grow long scalp hair is a distinct human characteristic. It probably originally evolved to aid in cooling the sun-exposed head, although the genetic determinants of long hair are largely unknown. Despite ancestral variations in hair growth, long scalp hair is common to all extant human populations, which suggests its emergence before or concurrently with the emergence of anatomically modern humans (AMHs), approximately 300 000 years ago.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China. Electronic address:
As a widely epigenetic modification, mA (N-methyladenosine, mA) can regulate the degradation, translation, and other biological functions of circRNAs through dynamic reversible processes. It plays an important role in regulating the life activities of biological organisms, particularly in cell differentiation, apoptosis, embryonic development, stress response, and innate immunity. In this study, bioinformatics analysis, qRT-PCR identification, FISH subcellular localization, and ceRNA network construction were performed on mA modified circRNAs regulating the apoptosis of secondary hair follicle cells of Inner Mongolia Albas white cashmere goats based on the skin mA sequencing data of secondary hair follicles in anagen and catagen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!