We have employed the P1-enhanced 32P-postlabeling procedure to detect the formation DNA of adducts in the white blood cells (WBC) of B6C3F1 mice treated by i.p. injection with benzene. Treatment twice a day with 440 mg/kg benzene for 1-7 days resulted in the formation of one major (adduct 1) and one minor (adduct 2) DNA adduct in the WBCs of mice. The same DNA adduct pattern was also found in the bone marrow (BM) of benzene treated mice. The relative adduct levels were dependent upon both benzene dose from 100-440 mg/kg and treatment time from 1 to 7 days. The relative adduct levels ranged between 0.11 and 1.33 adducts in 10(7) nucleotides for WBCs and 0.16-1.21 adducts in 10(7) nucleotides for BM. Following treatment with benzene, the levels of DNA adducts formed in WBCs were significantly correlated with the levels of DNA adducts formed in BM (r2 = 0.97, P < 0.001). Our results suggest that measurement of DNA adducts in WBCs may be an indicator of DNA adduct formation in BM following BZ exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/17.1.151 | DOI Listing |
Eur J Med Chem
January 2025
University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy. Electronic address:
The novel diiron amine complexes [FeCp(CO)(NHR')(μ-CO){μ-CN(Me)(Cy)}]CFSO [R' = H, 3; Cy, 4; CHCHNH, 5; CHCHNMe, 6; CHCH(4-CHOMe), 7; CHCH(4-CHOH), 8; Cp = η-CH, Cy = CH = cyclohexyl] were synthesized in 49-92 % yields from [FeCp(CO)(μ-CO){μ-CN(Me)(Cy)}]CFSO, 1a, using a straightforward two-step procedure. They were characterized by IR and multinuclear NMR spectroscopy, and the structure of 7 was confirmed through X-ray diffraction analysis. Complexes 3-8 and the acetonitrile adducts [FeCp(CO)(NCMe)(μ-CO){μ-CN(Me)(R)}]CFSO (R = Cy, 2a; Me, 2b; Xyl = 2,6-CHMe, 2c) were assessed for their water solubility, octanol-water partition coefficient and stability in physiological-like solutions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia.
The apurinic/apyrimidinic site (AP site) is a highly mutagenic and cytotoxic DNA lesion. Normally, AP sites are removed from DNA by base excision repair (BER). Methoxyamine (MOX), a BER inhibitor currently under clinical trials as a tumor sensitizer, forms adducts with AP sites (AP-MOX) resistant to the key BER enzyme, AP endonuclease.
View Article and Find Full Text PDFJ Biol Inorg Chem
January 2025
Department of Chemistry, Wayne State University, Detroit, MI, USA.
The discovery of cisplatin (cisPt) as an effective anticancer agent was a milestone in the health industry. Despite its success, undesired side effects and acquired resistance still limit the therapeutic usefulness of cisPt. Intrastrand adduct formation at consecutive purines and structural modifications of DNA caused by platinum(II) complexes are important factors for antitumor efficacy.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, People's Republic of China.
Acrolein (ACR) present in vivo and in vitro can damage proteins and DNA, linking it to various chronic diseases. In this paper, ergothioneine (EGT), abundant in edible mushrooms, has been studied for its ability to trap ACR and its reaction pathway with ACR at high temperatures using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). We synthesized the adducts (EGT-ACR-1 and EGT-ACR-2), elucidating their structure and reaction site through HRMS and nuclear magnetic resonance.
View Article and Find Full Text PDFDev Cogn Neurosci
January 2025
Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States; The Child Mind Institute, New York, NY, United States. Electronic address:
Reading difficulties and exposure to air pollution are both disproportionately high among youth living in economically disadvantaged contexts. Critically, variance in reading skills in youth living in higher socioeconomic status (SES) contexts largely derives from genetic factors, whereas environmental factors explain more of the variance in reading skills among youth living in lower SES contexts. Although reading research has focused closely on the psychosocial environment, little focus has been paid to the effects of the chemical environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!