Few natural matrix Standard Reference Materials are available for the validation of analytical methods measuring polychlorinated dioxins and furans (PCDDs and PCDFs) in marine ecosystems. The concentrations of PCDDs and PCDFs in NIST SRM 1945, SRM 1974a, and SRM 1941a are of interest because the analysis of marine mammal, mussel tissues and sediments have become important tools in the determination of organochlorine contamination of the environment. Because these SRMs have been demonstrated to be homogenous for other organic contaminants, they would be expected to be reliable standards for validation of polychlorinated dioxins and furans in marine mammals, mussels and sediments as well.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0045-6535(95)00226-xDOI Listing

Publication Analysis

Top Keywords

nist srm
16
polychlorinated dioxins
12
dioxins furans
12
srm 1945
8
srm 1974a
8
srm 1941a
8
reference materials
8
furans marine
8
marine ecosystems
8
pcdds pcdfs
8

Similar Publications

A rapid and efficient ultrasound-assisted extraction (UAE) procedure followed by inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of 14 rare earth elements (REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), along with yttrium (Y) and scandium (Sc), in coffee samples. The method was validated using certified reference material (NIST SRM 1547), recovery tests at four fortification levels, and comparisons with microwave-assisted digestion (MAD). Excellent accuracy and precision were achieved, with recovery rates ranging from 80.

View Article and Find Full Text PDF

Commutability is where the measurement response for a reference material (RM) is the same as for an individual patient sample with the same concentration of analyte measured using two or more measurement systems. Assessment of commutability is essential when the RM is used in a calibration hierarchy or to ensure that clinical measurements are comparable across different measurement procedures and at different times. The commutability of three new Standard Reference Materials (SRMs) for determining serum total 25-hydroxyvitamin D [25(OH)D], defined as the sum of 25-hydroxyvitamin D [25(OH)D] and 25-hydroxyvitamin D [25(OH)D], was assessed through an interlaboratory study.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple analytical techniques were combined to analyze the NIST human plasma reference material SRM 1950, aiming to provide a validated list of metabolite concentration benchmarks for the metabolomics community.
  • The study utilized four platforms—high-resolution NMR spectroscopy, direct injection tandem MS, liquid chromatography tandem MS, and inductively coupled plasma MS—resulting in accurate measurements for 728 unique metabolites and an additional 330 identified through literature mining.
  • A comprehensive database (SRM1950-DB) with 1,058 metabolites, including information like structures and concentrations, is available online, representing the most thorough quantitative characterization of SRM 1950 to date.
View Article and Find Full Text PDF

Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.

View Article and Find Full Text PDF

A fully automated dual-column purification procedure for Zn from biological samples, designed for subsequent Zn isotopic analysis, is presented that utilizes the prepFAST MC™ system (Elemental Scientific), DGA resin (TrisKem International), and TK201 resin (TrisKem International). The procedure developed enables the unattended processing of 20 samples per day and is characterized by low and reproduceable blanks (< 1.5 ng), no carry-over or memory effect, high reusability (> 50 times), high Zn yields 100.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!