Retinitis pigmentosa is a term commonly given to a group of inherited and progressive disorders which affect the photoreceptors of the retina. As part of an ongoing research programme throughout Spain, clinical, epidemiological, and genetic studies have been carried out on these diseases. Here, we report the relative frequencies of the different genetic types in 503 non-syndromic and 89 syndromic RP families of Spanish origin. The most frequent syndromic RP forms were Usher syndrome type 1 (20/89 families = 30%) and Usher syndrome type 2 (44 families = 49%). Among non-syndromic RP forms, 12% were autosomal dominant, 39% autosomal recessive and 4% X-linked. Forty-one percent were isolated or simplex cases and in 4% the genetic type could not be established.

Download full-text PDF

Source

Publication Analysis

Top Keywords

retinitis pigmentosa
12
usher syndrome
8
syndrome type
8
pigmentosa spain
4
spain spanish
4
spanish multicentric
4
multicentric multidisciplinary
4
multidisciplinary group
4
group retinitis
4
pigmentosa retinitis
4

Similar Publications

Retinal Phenotypes and Single-cell Sequencing Analysis of Ush2a Knockout Mice.

Exp Eye Res

January 2025

Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040 Guangdong, China. Electronic address:

Usher syndrome is a rare autosomal recessive genetic disorder that primarily affects both vision and hearing, manifesting as sensorineural hearing loss and progressive vision loss caused by retinitis pigmentosa. The pathogenesis of retinal degeneration in Usher syndrome is still largely unknown. In this study, a novel Ush2a knockout mouse model was successfully constructed using CRISPR/Cas9 technology.

View Article and Find Full Text PDF

Clinical perspective on pluripotent stem cells derived cell therapies for the treatment of neurodegenerative diseases.

Adv Drug Deliv Rev

January 2025

Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel; Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.

Self-renewal capacity and potential to differentiate into almost any cell type of the human body makes pluripotent stem cells a valuable starting material for manufacturing of clinical grade cell therapies. Neurodegenerative diseases are characterized by gradual loss of structure or function of neurons, often leading to neuronal death. This results in gradual decline of cognitive, motor, and physiological functions due to the degeneration of the central nervous systems.

View Article and Find Full Text PDF

Purpose: Reports of gene therapy-associated retinal atrophies and inflammation have highlighted the importance of preclinical safety assessments of adeno-associated virus (AAV) vector systems. We evaluated in nonhuman primates (NHPs) the ocular safety and toxicology of a novel AAV gene therapy targeting retinitis pigmentosa caused by mutations in PDE6A, which has since been used in a phase I/II clinical trial (NCT04611503).

Methods: A total of 34 healthy cynomolgus animals (Macaca fascicularis) were treated with subretinal injections of rAAV.

View Article and Find Full Text PDF

Retinal degenerative diseases encompass a diverse range of eye conditions that result in blindness, many due to photoreceptor dysfunction and loss. Regrettably, current clinical treatments are frequently not overly effective. However, photoreceptor transplantation shows promise as a potential therapy for late-stage retinal degenerative diseases.

View Article and Find Full Text PDF

Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!