Skin exit site infections are a major source of morbidity in patients with indwelling percutaneous catheters. Ceramic materials, such as hydroxyapatite (HA) and alumina, have demonstrated excellent biocompatibility and low rates of infection in soft tissues. Previous attempts to design ceramic materials for use as percutaneous connectors have resulted in rigid discs or solid cylindrical tubes. In order to take advantage of the inherent properties of HA without reducing patient comfort or mobility, the feasibility of applying a thin film of HA directly onto a flexible polymeric catheter was studied. The coating was applied by pulsed laser deposition (PLD). The beam from a KrF excimer laser impinged upon a target of pressed and sintered HA, producing a plume of ablated material that was deposited onto the catheter tubing. By rotating the tubing, an even coating of HA was applied to the catheter at a thickness of approximately 0.50 microm. The coating did not compromise the flexibility of the catheter tubing. Hence, PLD of a thin film of HA at the exit site of percutaneous catheters may be a means of incorporating the bioactive and biocompatible properties of HA with the mobility and patient comfort that characterize polymeric catheters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00002480-199407000-00126 | DOI Listing |
Nanotechnology
January 2025
School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xianning West Road No.28 Xi'an Shannxi Province, Xi'an, Shaanxi, 710049, CHINA.
HfO-based ferroelectric (FE) thin films have gained considerable interest for memory applications due to their excellent properties. However, HfO₂-based FE films face significant reliability challenges, especially the wake-up and fatigue effects, which hinder their practical application. In this work, we fabricated 13.
View Article and Find Full Text PDFDalton Trans
January 2025
Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12 R5CP, Ireland.
Layered materials, such as tungsten dichalcogenides (TMDs), are being studied for a wide range of applications, due to their unique and varied properties. Specifically, their use as either a support for low dimensional catalysts or as an ultrathin diffusion barrier in semiconductor devices interconnect structures are particularly relevant. In order to fully realise these possible applications for TMDs, understanding the interaction between metals and the monolayer they are deposited on is of utmost importance.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Microelectronics, Jiangsu University Zhenjiang Jiangsu 212013 China
Lead halide perovskite heterojunctions have been considered as important building blocks for fabricating high-performance photodetectors (PDs). However, the interfacial defects induced non-radiative recombination and interfacial energy-level misalignment induced ineffective carrier transport severely limit the performance of photodetection of resulting devices. Herein, interfacial engineering with a spin-coating procedure has been studied to improve the photodetection performance of CHNHPbI/SnO heterojunction PDs, which were fabricated by sputtering a SnO thin film on ITO glass followed by spin-coating a CHNHPbI thin film.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Walter Schottky Institute, Technical University of Munich, Garching 85748, Germany.
Zinc nitride (ZnN) comprises earth-abundant elements, possesses a small direct bandgap, and is characterized by high electron mobility. While these characteristics make the material a promising compound semiconductor for various optoelectronic applications, including photovoltaics and thin-film transistors, it commonly exhibits unintentional degenerate n-type conductivity. This degenerate character has significantly impeded the development of ZnN for technological applications and is commonly assumed to arise from incorporation of oxygen impurities.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America.
Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!