Thermodynamics of melting of the circular dumbbell d.

Biopolymers

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands.

Published: December 1995

The conformational behavior of DNA minihairpin loops is sensitive to the directionality of the base pair that closes the loop. Especially tailored circular dumbbells, consisting of a stem of three Watson-Crick base pairs capped on each side with a minihairpin loop, serve as excellent model compounds by means of which deeper insight is gained into the relative stability and melting properties of hairpin loops that differ only in directionality of the closing pair: C-G vs G-C. For this reason the thermodynamic properties of the circular DNA decamers 5'-d-3' (I) and reference compounds 5'-d-3' (II) and 5'-d(GCG-TC-CGC)-3' (III) are studied by means of nmr spectroscopy. Molecules I and II adopt dumbbell structures closed on both sides by a two-membered hairpin loop. At low temperature I consists of a mixture of two slowly exchanging forms, denoted L2L2 and L2L4. The low-temperature L2L2 form is the fully intact minihairpin structure with three Watson-Crick C-G base pairs. The high-temperature form, L2L4, contains a partially disrupted closing G-C base pair in the 5'-GTTC-3' loop, with the cytosine base placed in a syn orientation. The opposite 5'-CTTG-3' loop remains stable. A study of the noncircular hairpin structure III shows similar conformational behavior for the 5'-GTTC-3' loop as found in I; a syn orientation for C(6) and two slowly exchanging imino proton signals for G(3). The melting point Tm of II was estimated to lie above 365 K. The Tm value of the duplex stem and the 5'-CTTG-3' loop of the L2L4 form of I is 352 +/- 2 K. The delta H0 is calculated as -89 +/- 10 kJ/mol. The Tm value determined for the individual residues of the 5'-GTTC-3' loop lies 4 degrees-11 degrees lower. The enthalpy delta H0 of melting the thymine residues in the 5'-GTTC-3' loop is calculated to be -61 +/- 7 kJ/mol. Thermodynamic data of the equilibrium between the slowly exchanging two- and four-membered loop conformers of I reveal an upper limit for delta H0 of +30 kJ/mol in going from a two-membered to a four-membered loop, in agreement with the enthalpy difference of +28 kJ/mol between the two loops at the Tm midpoint. For hairpin III the upper limit for delta H0 in going from a two-membered to a four-membered loop amounts to +/- 21 kJ/mol.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.360360604DOI Listing

Publication Analysis

Top Keywords

5'-gttc-3' loop
16
loop
12
slowly exchanging
12
four-membered loop
12
conformational behavior
8
base pair
8
three watson-crick
8
base pairs
8
syn orientation
8
5'-cttg-3' loop
8

Similar Publications

The circular DNA decamer 5'-d-3' was studied in solution by means of NMR spectroscopy and molecular dynamics in H2O. At a temperature of 269 K, a 50/50 mixture of two dumbbell structures (denoted L2L2 and L2L4) is present. The L2L2 form contains three Watson-Crick C-G base pairs and two two-residue loops is opposite parts of the molecule.

View Article and Find Full Text PDF

Thermodynamics of melting of the circular dumbbell d.

Biopolymers

December 1995

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands.

The conformational behavior of DNA minihairpin loops is sensitive to the directionality of the base pair that closes the loop. Especially tailored circular dumbbells, consisting of a stem of three Watson-Crick base pairs capped on each side with a minihairpin loop, serve as excellent model compounds by means of which deeper insight is gained into the relative stability and melting properties of hairpin loops that differ only in directionality of the closing pair: C-G vs G-C. For this reason the thermodynamic properties of the circular DNA decamers 5'-d-3' (I) and reference compounds 5'-d-3' (II) and 5'-d(GCG-TC-CGC)-3' (III) are studied by means of nmr spectroscopy.

View Article and Find Full Text PDF

In recent years various examples of highly stable two-residue hairpin loops (miniloops) in DNA have been encountered. As the detailed structure and stability of miniloops appear to be determined not only by the nature and sequence of the two bases in the loop, but also by the closing base pair, it is desirable to carry out in-depth studies of especially designed small model DNA compounds. Therefore, a circular DNA dumbbell-like molecule is tailored to consist of a stem of three Watson-Crick base pairs, flanked on each side by a minihairpin loop.

View Article and Find Full Text PDF

The circular DNA decamer 5'-d [formula: see text] 3' is studied in solution by means of NMR spectroscopy. At low temperature the molecule adopts a dumbbell structure with three Watson-Crick C-G base pairs and two two-residue loops in opposite parts of the molecule. On raising the temperature another conformer appears, in which the closing C-G base pair in the 5'-GTTC-3' loop is disrupted, whereas the opposite 5'-CTTG-3' loop remains stable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!