In this study we investigate the molecular mechanisms that are responsible for the restricted expression of Wnt-1 during embryogenesis. We report that a single homeodomain binding site, HBS1, within the Wnt-1 enhancer contributes to appropriate spatial expression of Wnt-1 in the developing nervous system. This HBS1 site may be required for repressing Wnt-1 expression in the developing forebrain since specific mutations of this site result in an extension of the rostral boundary of Wnt-1/lacZ staining in transgenic embryos. We further demonstrate that a subset of homeodomain proteins expressed in the forebrain (i.e., Dix2, Emx2) interact specifically with HBS1. These findings suggest that these (or related) homeodomain proteins may regulate expression of Wnt-1 during normal brain development by interacting with the HBS1 site in the Wnt-1 enhancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0925-4773(95)00427-0 | DOI Listing |
Cells
December 2024
Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA.
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease with unknown etiology, characterized by chronic inflammation and tissue scarring. Although, Pirfenidone and Nintedanib slow the disease progression, no currently available drugs or therapeutic interventions address the underlying cause, highlighting the unmet medical need. A matricellular protein, Wnt-1-induced secreted protein 1 (WISP1), also referred to as CCN4 (cellular communication network factor 4), is a secreted multi-modular protein implicated in multi-organ fibrosis.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China. Electronic address:
As the global population ages, the incidence of age-related musculoskeletal diseases continues to increase, driven by numerous complex and poorly understood factors. WNT-1 inducible secreted protein 1 (WISP-1), a secreted matrix protein, plays a critical role in the growth and development of the musculoskeletal system, including chondrogenesis, osteogenesis, and myogenesis. Numerous in vivo and in vitro studies have demonstrated that WISP-1 is significantly upregulated in age-related musculoskeletal conditions, such as osteoarthritis, osteoporosis, and sarcopenia, suggesting its involvement in the pathogenesis of these diseases.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Centre for Nanobiotechnology, VIT University Vellore 632 014 India +91-416-2243092 +91-416-220-2879.
Liver cancer, with its robust metastatic propensity, imposes a substantial global health burden of around 800 000 new cases annually. Mutations in the Wnt/β-catenin pathway genes are common in liver cancer, driving over 80% of cases. Targeting this pathway could potentially lead to better treatments.
View Article and Find Full Text PDFBMC Musculoskelet Disord
November 2024
Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Background: Osteoporosis is characterized by low systemic bone mineral content and destruction of bone microarchitecture. Promoting bone regeneration and reversing its loss by infusion of exogenous bone marrow mesenchymal stem cells (BMSCs) is a potentially effective treatment for osteoporosis. However, their limited migration to target organs reduces the therapeutic effect of the cells.
View Article and Find Full Text PDFBiomolecules
September 2024
Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
Preeclampsia (PE) is a complex multisystem disease characterized by hypertension of sudden onset (>20 weeks' gestation) coupled with the presence of at least one additional complication, such as proteinuria, maternal organ dysfunction, or uteroplacental dysfunction. Hypertensive states during pregnancy carry life-threatening risks for both mother and baby. The pathogenesis of PE develops due to a dysfunctional placenta with aberrant architecture that releases factors contributing to endothelial dysfunction, an antiangiogenic state, increased oxidative stress, and maternal inflammatory responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!