We have explored basic rules guiding the early development of topographically organized projections, employing the rat corticopontine projection as a model system. Using anterograde in vivo tracing with 1,1',dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), we studied the distribution of labelled fibers in the pontine nuclei in relation to cortical site of origin during the first postnatal week. Labelled corticopontine fibers enter the pontine nuclei in distinct, sharply defined zones. The putative terminal fibers typically occupy lamella-like subspaces. Related to changes in cortical site of origin, we describe mediolateral, internal to external, and caudorostral distribution gradients in the pontine nuclei. Fibers originating in the anterolateral cortex occupy an internal central core, while implantations at increasing distance from the anterolateral cortex produce 1) more externally located lamellae, and 2) a caudal to rostral shift in fiber location. Previous investigations have shown that pontocerebellar neurons migrate into the ventral pons in a temporal sequence (Altman and Bayer [1987] J. Comp. Neurol. 257:529). The earliest arriving neurons occupy the central core and later arriving neurons settle in more externally and rostrally located subspaces. We hypothesize that the earliest arriving corticopontine fibers grow into the then only available zone of pontocerebellar neurons (central core), attracted by a diffusible chemotropic cue. Later arriving fibers grow into correspondingly later and more externally and rostrally located contingents of pontocerebellar neurons. Thus, we propose that the topographical organization in the early postnatal corticopontine projection is determined by simple temporal and spatial gradients operative within source (cerebral cortex) and target region (pontine nuclei).

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.903610107DOI Listing

Publication Analysis

Top Keywords

pontine nuclei
16
corticopontine projection
12
central core
12
pontocerebellar neurons
12
topographical organization
8
organization early
8
early postnatal
8
postnatal corticopontine
8
cortical site
8
site origin
8

Similar Publications

Background And Purpose: The dorsolateral portion of the caudal pons contains the vestibular nucleus (VN) and inferior cerebellar peduncle (ICP) that play important roles in conveying and processing vestibular and ocular motor signals. This study aimed to characterize ocular motor abnormalities along with their anatomical correlations in dorsolateral pons (DLP) lesions.

Methods: We analyzed clinical features, and results of neuro-otological evaluations and neuroimaging of 18 patients with unilateral DLP lesions (17 with DLP infarction and 1 with cavernous malformation) from among 506 patients with pontine infarction in a stroke registry.

View Article and Find Full Text PDF

Aged mice show a reduction in 5-HT neurons and decreased cellular activation in the dentate gyrus when exposed to acute running.

Brain Struct Funct

December 2024

Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.

Serotonin (5-HT) is an important neurotransmitter for cognition and neurogenesis in the dentate gyrus (DG), which occurs via movement stimulation such as physical activity. Brain 5-HT function changes secondary to aging require further investigation. We evaluated whether aged animals would present changes in the number of 5-HT neurons in regions such as the dorsal (DRN) and median (MRN) raphe nuclei and possible changes in the rate of cellular activation in the DG in response to acute running, as a reduction in 5-HT neurons could contribute to a decline in neuronal activation in the DG in response to physical activity in aged mice.

View Article and Find Full Text PDF
Article Synopsis
  • During recovery from spinal cord injury in macaques, the unaffected side of the sensorimotor cortex becomes crucial in controlling movements of the injured hand.
  • Effective movement regulation involves not just sending motor commands directly to muscles, but also requires coordination with higher-level brain systems, like the cortico-basal ganglia and cortico-cerebellar loops.
  • The study found that following injury, there was an increase in axonal projections from the affected motor cortex to key brain regions, suggesting these changes help activate the unaffected cortex to support movement recovery on the impaired side.
View Article and Find Full Text PDF

A congenital neurologic disorder affected a herd of Tabapuã cattle. Of 98 newborn calves, 12 (12%) were affected; they were sired by 3 related bulls. This frequency suggested a genetic disorder caused by an autosomal recessive gene.

View Article and Find Full Text PDF

Sudden unexplained death in childhood (SUDC) is death of a child ≥ 12 months old that is unexplained after autopsy and detailed analyses. Among SUDC cases, ~ 30% have febrile seizure (FS) history, versus 2-5% in the general population. SUDC cases share features with sudden unexpected death in epilepsy (SUDEP) and sudden infant death syndrome (SIDS), in which brainstem autonomic dysfunction is implicated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!