The axially symmetric problem of synovial film filtration and synovial gel formation at normal approach of cartilage surfaces in the human hip joint loaded by a compressive force has been solved numerically in Part III of this paper [Hlavácek and Novák, J. Biomechanics 28, 1193-1198 (1995)] for the Newtonian viscous phase of the biphasic synovial fluid and for low loads only. Because of a high non-linearity of the problem the method used there breaks down for higher loads. On anticipating that for a high step loading the fluid pressure in the central part of the squeezed synovial film is close to the pressure in a dry frictionless contact, the synovial film filtration at the film centre is governed by two ordinary differential equations that are easy to solve. The central gel film thickness thus obtained, i.e. the film thickness at the moment, when the filtered fluid turns into a stable gel is about 1 micron for the normal synovial fluid (with a non-Newtonian viscous phase of the synovial fluid) and changes very little if the geometric, material and loading parameters of the problem vary within the physiological range. The inflammatory case (with a more or less Newtonian viscous phase) yields values by one order lower at least. The results of stress analysis in the cartilage for this mixture model suggest the reason for vertical cracking at the free cartilage surface and horizontal splitting at the tide mark observed in osteoarthritic joints.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0021-9290(94)00178-7 | DOI Listing |
Skeletal Radiol
January 2025
Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Yawkey 6044, Boston, MA, 02114, USA.
The radiological manifestations of calcium pyrophosphate deposition (CPPD) revolve around two main axes: the asymptomatic form and CPPD disease. The latter is a consequence of an immune response to calcium phosphate crystals. Chondrocalcinosis is broadly considered the radiographic manifestation of CPPD regardless of whether it is asymptomatic or associated with inflammatory arthritis.
View Article and Find Full Text PDFEquine Vet J
January 2025
Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark.
Background: MicroRNAs, a class of small noncoding RNAs, serve as post-transcriptional regulators of gene expression and are present in a stable and quantifiable form in biological fluids. MicroRNAs may influence intra-articular responses and the course of disease, but very little is known about their temporal changes in osteoarthritis.
Objectives: To identify miRNAs and characterise the temporal changes in their abundance in SF from horses with experimentally induced osteoarthritis.
Medicina (Kaunas)
November 2024
Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
In recent years, numerous potential prognostic biomarkers for rheumatoid arthritis (RA) have been investigated. Despite these advancements, clinical practice primarily relies on autoantibody tests-for rheumatoid factor (RF) and anti-citrullinated protein antibody (anti-CCP)-alongside inflammatory markers, such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Expanding the repertoire of diagnostic and therapeutic biomarkers is critical for improving clinical outcomes in RA.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Infectious Diseases Unit, Trieste University Hospital (ASUGI), 34125 Trieste, Italy.
: The early identification of infection-causing microorganisms through multiplex PCR panels enables prompt and targeted antibiotic therapy. This study aimed to assess the performance of the BioFire Joint Infection Panel (BF-JIP) in analysing non-synovial fluid samples. : We conducted a retrospective cohort study at Trieste University Hospital, Italy, on hospitalised adults with non-synovial fluid samples tested by both BF-JIP and traditional culture methods (November 2022-April 2024).
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Lactic acid (LA) is an essential glycolytic metabolite and energy source in the body, which is present in high levels in the synovial fluid of patients with rheumatoid arthritis (RA) and is a reliable indicator for identifying inflammatory arthritis. LA not only acts as an inflammatory amplifier in RA, recent studies have found that novel posttranslational modification (PTM) lactylation mediated by LA may also play a key role in RA. Single-cell sequencing showed that the RA lactylation score of patients with RA was significantly increased, and core lactylation-promoting genes, including NDUFB3, NGLY1, and other genes, were found to be potential biomarkers of RA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!