Smooth muscle cell (SMC) migration and proliferation and extracellular matrix remodeling are essential aspects of the arterial response to injury, vessel development, and atherogenesis. Matrix metalloproteinase (MMP) expression is associated with SMC proliferation and migration after arterial injury. To assess the role of MMPs in SMC proliferation and migration and intimal thickening, we measured the effect of the synthetic MMP inhibitor BB94 (Batimastat) on DNA synthesis and migration of SMCs in vitro as well as the formation of a neointima after balloon injury to the rat carotid artery. BB94 dose-dependently inhibited SMC migration induced by platelet-derived growth factor (PDGF)-BB through a filter coated with a thick basement membrane matrix (Matrigel) layer but did not show any inhibitory effect on SMC migration through a lightly coated filter. At concentrations up to 1 mumol/L, BB94 did not alter DNA synthesis induced by PDGF-AA or PDGF-BB. Treatment with 30 mg BB94.kg-1.d-1 IP for 7 or 14 days after balloon injury to the rat carotid artery decreased the total number of intimal SMC nuclei and suppressed intimal thickening. SMC proliferation (5-bromo-2'-deoxyuridine labeling) was decreased in the media at 2 days, whereas it was increased in the intima at 7 but not 14 days. These results suggest that BB94 inhibits intimal thickening after arterial injury by decreasing SMC migration and proliferation and support the conclusion that MMPs play a significant role in regulating intimal thickening in injured arteries.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.atv.16.1.28DOI Listing

Publication Analysis

Top Keywords

smc migration
16
intimal thickening
16
migration proliferation
12
smc proliferation
12
smooth muscle
8
muscle cell
8
migration
8
matrix metalloproteinase
8
smc
8
proliferation migration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!