Wistar Imamichi rat and human respiratory cilia were examined with anti-dynein antibody (AD2), which is specific for sea urchin sperm flagellar dynein. AD2-labelled fresh-frozen normal rat and human cilia stained clearly by immunofluorescence and the peroxidase-antiperoxidase (PAP) technique. On immunoelectron microscopy, AD2 labelled the outer dynein arms of normal human cilia. Paraffin-embedded normal human cilia also stained by immunofluorescence, although not always clearly. Neither the cilia of WIC-Hyd male rats, an animal model of Kartagener's syndrome, nor human cilia from patients with primary ciliary dyskinesia (PCD) reacted positively by the immunofluorescence or PAP technique. Western blots of normal rat cilia yielded a single band of about 450 kDa. In conclusion, AD2 recognizes the outer arm dynein heavy chains of healthy cilia and may be useful in diagnosing and classifying PCD light microscopically especially when only paraffin-embedded specimens are available. This approach may be of potential use for better defining and classifying PCD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00199389DOI Listing

Publication Analysis

Top Keywords

human cilia
16
rat human
12
cilia
11
human respiratory
8
respiratory cilia
8
anti-dynein antibody
8
primary ciliary
8
ciliary dyskinesia
8
normal rat
8
cilia stained
8

Similar Publications

The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8, an effector of Rab11 and a nucleotide exchange factor (GEF) for Rab8, is phosphorylated at S272 by NDR2 kinase (aka STK38L), a canine erd gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylated Rabin8 regulates Rab11-Rab8 succession in X.

View Article and Find Full Text PDF

The estrogen receptor alpha (ERα) plays an important role in male reproduction and fertility. Its activity is modulated by phosphorylation of multiple amino acid residues. The ERα phosphorylated at serine 305 (S305) in human cells (homologous with serine 309 in mice) induces ligand-independent ERα activity.

View Article and Find Full Text PDF

Stem Cells Within Three-Dimensional-Printed Scaffolds Facilitate Airway Mucosa and Bone Regeneration and Reconstruction of Maxillary Defects in Rabbits.

Medicina (Kaunas)

December 2024

Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model.

View Article and Find Full Text PDF

Breaking Left-Right Symmetry by the Interplay of Planar Cell Polarity, Calcium Signaling and Cilia.

Cells

December 2024

Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France.

The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis.

View Article and Find Full Text PDF

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!