Two sets of studies were performed to evaluate the forensic utility of sequencing human mitochondrial DNA (mtDNA) derived from various tissues and amplified by the polymerase chain reaction (PCR). Sequencing was performed on a Perkin-Elmer/Applied Biosystems Division (PE/ABD) automated DNA sequencer (model 373A). The first set of experiments included typical validation studies that had previously been conducted on forensic DNA markers, such as: chemical contaminant effects on DNA from blood and semen and the effect of typing DNA extracted from body fluid samples deposited on various substrates. A second set of experiments was performed strictly on human hair shafts. These studies included typing mtDNA from hairs that were: (1) from different body areas, (2) chemically treated, (3) from deceased individuals, and (4) deliberately contaminated with various body fluids. The data confirm that PCR-based mtDNA typing by direct automated sequencing is a valid and reliable means of forensic identification.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01369907DOI Listing

Publication Analysis

Top Keywords

mitochondrial dna
8
set experiments
8
dna
6
validation mitochondrial
4
sequencing
4
dna sequencing
4
forensic
4
sequencing forensic
4
forensic casework
4
casework analysis
4

Similar Publications

Large-bodied pelagic sharks are key regulators of oceanic ecosystem stability, but highly impacted by severe overfishing. One such species, the shortfin mako shark (), a globally widespread, highly migratory predator, has undergone dramatic population reductions and is now Endangered (IUCN Red List), with Atlantic Ocean mako sharks in particular assessed by fishery managers as overfished and in need of urgent, improved management attention. Genomic-scale population assessments for this apex predator species have not been previously available to inform management planning; thus, we investigated the population genetics of mako sharks across the Atlantic using a bi-organelle genomics approach.

View Article and Find Full Text PDF

Mechanisms driving the spatial and temporal patterns of species distribution in the Earth's largest habitat, the deep ocean, remain largely enigmatic. The late Miocene to the Pliocene (~23-2.58 Ma) is a period that was marked by significant geological, climatic, and oceanographic changes.

View Article and Find Full Text PDF

Mitochondrial disease and epilepsy in children.

Front Neurol

January 2025

Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China.

Mitochondria is the cell's powerhouse. Mitochondrial disease refers to a group of clinically heterogeneous disorders caused by dysfunction in the mitochondrial respiratory chain, often due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) that encodes mitochondrial proteins. This dysfunction can lead to a variety of clinical phenotypes, particularly affecting organs with high energy demands, such as the brain and muscles.

View Article and Find Full Text PDF

Mitochondrial DNA oxidation and content in different metabolic phenotypes of women with polycystic ovary syndrome.

Front Endocrinol (Lausanne)

January 2025

Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.

Introduction: Polycystic Ovary Syndrome (PCOS) affects 5-20% of reproductive-aged women. Insulin resistance (IR) is common in PCOS with consequent elevated risks of metabolic disorders and cardiovascular mortality. PCOS and obesity are complex conditions associated with Metabolic Syndrome (MS), contributing to cardiovascular disease and type 2 diabetes mellitus (T2D).

View Article and Find Full Text PDF

Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!