PAF-acether is a phospholipid synthesized by most animal tissues and exerting a strong decrease on the heart's contractile force and coronary flow. PAF-acether (10(-9) and 10(-10)M) was administered to isolated guinea pig hearts perfused via the Langendorff apparatus with Chenoweth solution. Zinc (1.5 microM) is known to benefit heart function thus, Zn2+ (1.5, 7.5, and 30 microM) was added in the perfusing solution before or after PAF-acether administration. Contractile force, coronary flow, and heart rate were recorded by means of a Narco MK-IV Physiograph throughout all modes of perfusion. Calcium inhibitor (Verapamil 10(-10)M) and Pb+2 Co2+ (1.5 x 10(-6)M) were used subsequently in the perfusing solutions in order to elucidate some of the Zn and PAF interactions observed. All hearts were analyzed for their Zn and Ca content by means of an Atomic Absorption Spectrophotometry (AAS). Our data suggest that low concentrations of zinc (1.5 microM) can strongly inhibit PAF-induced decrease of contractile force and coronary flow. Zinc-inhibiting effects on PAF's negative inotropic action (myocytic level) is not exerted through Zn-Ca antagonism. Nevertheless, a Zn-Ca antagonism in the arteriolar level cannot be excluded. Zinc inhibits PAF selectively only if it is administered before PAF injection and this strongly suggests a receptor interaction between the metal and the phospholipid at the heart level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02789148 | DOI Listing |
Nutrients
December 2024
School of Sport, Exercise & Nutrition, College of Health, Massey University, Palmerston North 4410, New Zealand.
Background: Consuming collagen hydrolysate (CH) may improve symptoms of exercise-induced muscle damage (EIMD); however, its acute effects have not been compared to dairy protein (DP), the most commonly consumed form of protein supplement. Therefore, this study compared the effects of CH and DP on recovery from EIMD.
Methods: Thirty-three males consumed either CH ( = 11) or DP ( = 11), containing 25 g of protein, or an isoenergetic placebo ( = 11) immediately post-exercise and once daily for three days.
Int J Mol Sci
December 2024
Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia.
The cardiac myosin binding protein-C (cMyBP-C) regulates cross-bridge formation and controls the duration of systole and diastole at the whole heart level. As known, mutations in cMyBP-C increase the cross-bridge number and rate of their cycling, hypercontractility, and myocardial hypertrophy. We investigated the effects of the mutations D75N and P161S of cMyBP-C related to hypertrophic cardiomyopathy on the mechanism of force generation in isolated slow skeletal muscle fibers.
View Article and Find Full Text PDFCells
December 2024
Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
The myosin light chains (MLCs) of non-muscle myosin II are known to regulate cellular architecture and generate cellular forces; they also have an increasingly emerging role in the progression of cancer. The phosphorylation state of the myosin light chains controls the activity of myosins that are implicated in invasion and proliferation. In cancers, when proliferation is greatly increased, cytokinesis relies on phosphorylated light chains to activate the contractile forces used to separate the cells.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Exero Medical Ltd., Or Yehuda 6037606, Israel.
Anastomotic leakage (AL) is one of the most devastating complications after colorectal surgery. The verification of the adequate perfusion of the anastomosis is essential to ensuring anastomosis integrity following colonic resections. This study aimed to evaluate the efficacy of measuring the electrical activity of the colonic muscularis externa at an anastomosis site for perfusion analysis following colorectal surgery.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Anatomy, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA.
This study was undertaken to explore the forces acting on the pes during pedal anchoring and to discern if pedal anchoring required the activation of the intrinsic pedal musculature. Replica feet equipped with strain gauges were moved over mud substrate, mimicking locomotion and pedal anchoring. Quantification of the substrate tracks demonstrated that they were similar to those made by freely moving , that the locomotor and pedal anchoring tracks were significantly different, and that the composition of the artificial feet significantly altered the tracks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!