A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Event-related functional MR imaging of visual cortex stimulation at high temporal resolution using a standard 1.5 T imager. | LitMetric

AI Article Synopsis

  • The study demonstrates the ability to track changes in blood oxygen levels related to brain activity using a standard MRI setup, achieving high timing accuracy.
  • Researchers utilized a modified 3D imaging sequence with specific parameters to obtain quick, sequential brain images, allowing for effective functional imaging.
  • An innovative triggering system synchronized a light stimulus with the MRI scan to enhance data collection and enable analysis of brain responses to visual events.

Article Abstract

The authors report the technical feasibility of measuring event-related changes in blood oxygenation for studying brain function in humans at high temporal resolution. Measurements were performed on a conventional whole-body 1.5 T clinical scanner with a nonactive-shielded standard gradient system of 1 ms rise time for a maximum gradient strength of 10 mT/m. The radiofrequency (RF) transmitting and receiving MR unit consists of a commercially available circular polarized head coil. Magnet shimming with all first-order coils was performed to the volunteer's head resulting in a magnetic field homogeneity of about 0.1-0.2 ppm. The measuring sequence used was a modified 3D, first-order flow rephased, FLASH sequence with reduced bandwidth = 40 Hz/pixel, TR = 80 ms, TE = 56 ms, flip angle = 40-50 degrees, matrix = 64 x 128, field-of-view = 200-250 mm2, slice thickness = 4 mm, NEX = 1,128 partitions, and a total single scan time of about 10 min. In this sequence the 3D gradient table was removed and the 3D partition-loop acts as a time-loop for sequential measurement of 128 or 32 consecutive images at the same slice position. This means that event-related functional MRI could be performed with an interscan delay of 80 ms for a series of 128 sequential images or with an interscan delay of 320 ms for a simultaneous measurement of four slices with a series of 32 sequential images for each slice. We used a TTL signal given by the gradient board at the beginning of every line-loop in the measuring sequence and a self-made "TTL-Divider-Box" for the event triggering. This box was used to count and scale down the TTL signals by a factor of 128 and to trigger after every 128th TTL signal a single white flash-light, which was seen by the volunteer in the dark room of the scanner with a period of 10.24 s. As a consequence, the resulting event-related scan data coincide at each line of the series of 128 sequential images, which were repeated in 128 x 80 ms or 32 x 320 ms for the single- or four-slice experiment, respectively. Visual cortex response magnitude measured was about 5-7% with an approximate Gaussian shape and a rise time from stimulus onset to maximum of about 3-4 s, and a fall time to the baseline of about 5-6 s after end of stimulus. The reported data demonstrate the feasibility of functional MRI studies at high temporal resolution (up to 80 ms) using conventional MR equipment and measuring sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0730-725x(95)00044-hDOI Listing

Publication Analysis

Top Keywords

high temporal
12
temporal resolution
12
measuring sequence
12
sequential images
12
event-related functional
8
visual cortex
8
rise time
8
images slice
8
functional mri
8
interscan delay
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!