Analysis of triplet repeats in the huntingtin gene in Japanese families affected with Huntington's disease.

J Med Genet

Department of Clinical Neurology and Neuroscience, Faculty of Medicine, University of Tokyo, Japan.

Published: September 1995

Huntington's disease (HD) is associated with the expansion of a CAG repeat in the huntingtin gene. Molecular analysis of the repeat in Japanese HD patients and normal controls was performed. The size of the CAG repeat ranged from 37 to 95 repeats in affected subjects and from seven to 29 in normal controls. A significant correlation was found between the age of onset and the CAG expansion. The length of the expanded repeat is unstable in meiotic transmission and large increases occur in paternal transmission. At the same time the CCG repeat polymorphism adjacent to the CAG repeat was analysed and haplotypes of HD chromosomes were identified. Strong linkage disequilibrium was found between the CAG repeat expansion and an allele of (CCG)10 in Japanese HD chromosomes. It is distinct from that described previously in western populations. Western HD chromosomes strongly associate with an allele of (CCG)7. Possible mechanisms underlying the disequilibrium in Japan are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1051670PMC
http://dx.doi.org/10.1136/jmg.32.9.701DOI Listing

Publication Analysis

Top Keywords

cag repeat
16
huntingtin gene
8
huntington's disease
8
normal controls
8
repeat
7
cag
5
analysis triplet
4
triplet repeats
4
repeats huntingtin
4
gene japanese
4

Similar Publications

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

The role of mitochondrial dysfunction in Huntington's disease: Implications for therapeutic targeting.

Biomed Pharmacother

January 2025

School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India. Electronic address:

Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by cognitive decline, motor dysfunction, and psychiatric disturbances. A common feature of neurodegenerative disorders is mitochondrial dysfunction, which affects the brain's sensitivity to oxidative damage and its high oxygen demand. This dysfunction may plays a significant role in the pathogenesis of Huntington's disease.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a multifaceted neurological disorder characterized by the progressive deterioration of motor, cognitive, and psychiatric functions. Despite a limited understanding of its pathogenesis, research has implicated abnormal trinucleotide cytosine-adenine-guanine CAG repeat expansion in the huntingtin gene (HTT) as a critical factor. The development of innovative strategies is imperative for the early detection of predictive biomarkers, enabling timely intervention and mitigating irreversible cellular damage.

View Article and Find Full Text PDF

Background: Spinocerebellar ataxia type 3 (SCA3) is a hereditary disease caused by abnormally expanded CAG repeats in the ATXN3 gene. The study aimed to identify potential biomarkers for assessing therapeutic efficacy by investigating the associations between expanded CAG repeat size, brain and spinal cord volume loss, and motor functions in patients with SCA3.

Methods: In this prospective, cross-observational study, we analyzed 3D T1-weighted MRIs from 92 patients with SCA3 and 42 healthy controls using voxel-based morphometry and region of interest approaches.

View Article and Find Full Text PDF

Fluid biomarkers play important roles in many aspects of neurodegenerative diseases, such as Huntington's disease (HD). However, a main question relates to how well levels of biomarkers measured in CSF are correlated with those measured in peripheral fluids, such as blood or saliva. In this study, we quantified levels of four neurodegenerative disease-related proteins, neurofilament light (NfL), total tau (t-tau), glial fibrillary acidic protein (GFAP) and YKL-40 in matched CSF, plasma and saliva samples from Huntingtin (HTT) gene-positive individuals (n = 21) using electrochemiluminescence assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!