Cortical remote effects of right deep-seated lesions were studied with two cerebral blood flow measurement methods (two-dimensional xenon-133 inhalation and 99mTc HMPAO SPECT) in a population of 13 right-handed stroke patients. A neuropsychological battery of tests suitable for assessment of possible visual neglect was performed. Neglect was present in 7 cases. A regional cortical hypoperfusion was observed in all patients. However, in neglect patients it was more extended and involved the right inferior parietal region suggesting a causal relationship between cortical dysfunction and neuropsychological deficit. This finding supports the model attributing neglect to a unilateral attention-arousal defect in a cortico-limbic-reticular loop.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000117144 | DOI Listing |
Acta Neuropsychiatr
January 2025
Department of Psychiatry, Korea University Guro Hospital, Seoul, Korea.
Objective: This study aimed to utilise graph theory to explore the functional brain networks in individuals with tic disorders and to investigate resting-state functional connectivity changes in critical brain regions associated with tic disorders.
Methods: Participants comprised individuals with tic disorders and age-matched healthy controls, ranging from 6 to 18 years old, all recruited from Korea University Guro Hospital. We ensured a medication-naïve cohort by excluding participants exposed to psychotropic medications for at least three weeks prior to the study.
Eur J Neurol
February 2025
IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Neurology and Stroke Center, Maggiore Hospital, Bologna, Italy.
Background: To investigate the relevance of hyperperfusion on computerised perfusion imaging (CTP) in the emergency setting in people with non-convulsive status epilepticus (NCSE) and previous stroke, to derive relevant aspects on the epileptogenic focus and the network recruited for NCSE propagation.
Methods: We enrolled consecutive adult patients with acute-onset NCSE and a previous stroke at a single institution undergoing CTP and EEG during symptoms. All patients underwent standard imaging including CT, CTP, CT angiograms and standard EEG within 30 min from hospital arrival.
Alzheimers Res Ther
January 2025
Department of Neurology, University Medical Center Rostock, 18147, Rostock, Germany.
Background: Degeneration of the basal forebrain cholinergic system is a hallmark feature shared by Alzheimer's disease (AD) and Lewy body disease (LBD) whereas hippocampus atrophy is more specifically related to AD. We aimed to investigate the relationship between basal forebrain and hippocampus atrophy, cognitive decline, and neuropathology in a large autopsy sample.
Methods: Data were obtained from the National Alzheimer's Coordinating Center (NACC).
Sci Rep
January 2025
Imaging Department, Yantaishan Hospital, Yantai, China.
Noise-induced hearing loss (NIHL) is a common occupational condition. The aim of this study was to develop a classification model for NIHL on the basis of both functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) by applying machine learning methods. fMRI indices such as the amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree of centrality (DC), and sMRI indices such as gray matter volume (GMV), white matter volume (WMV), and cortical thickness were extracted from each brain region.
View Article and Find Full Text PDFVitam Horm
January 2025
Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.
The hypothalamus is the gray matter of the ventral portion of the diencephalon. The hypothalamus is the higher center of the autonomic nervous system and is involved in the regulation of various homeostatic mechanisms. It also modulates respiration by facilitating the respiratory network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!