Ten monoclonal antibodies (Mabs) against glycoproteins of the bovine Reissner's fiber (RF) have been used in a structural and ultrastructural immunocytochemical investigation of the bovine subcommissural organ (SCO) and RF. The SCO of other vertebrate species has also been studied. For comparison, polyclonal antibodies against bovine RF (AFRU) were used. The SCO and RF of ox, pig and dogfish and the SCO of dog, rabbit, rat and frog were submitted to light-microscopic immunocytochemistry using AFRU and Mabs. Postembedding ultrastructural immunocytochemistry was applied to sections of bovine SCO using AFRU and Mabs. Bovine SCO consists of ependymal and hypendymal cell layers, the latter being arranged as cell strands across the posterior commissure, or as hypendymal rosette-like structures. All cytoplasmic regions of the ependymal and hypendymal cells were strongly stained with AFRU. Six Mabs showed the same staining pattern as AFRU, one Mab stained RF strongly and SCO weakly, two Mabs stained RF but not SCO, and, finally, one Mab (3B1) exclusively stained the apices of the ependymal and hypendymal cells. All Mabs recognized the SCO and RF of the pig. Two Mabs bound to the SCO of the dog. One Mab stained the SCO of the rabbit and another the SCO of the rat. The SCO of frog and dogfish were totally negative. Bovine SCO stained with AFRU, showed label in the rough endoplasmic reticulum (RER) and the secretory granules (SG) of the ependymal and hypendymal cells. The former, in the form of parallel cisternae, reticulum or concentric rings, was seen throughout all cytoplasmic regions. SG were abundant in the apical pole of the ependymal and hypendymal cells. Only one Mab showed a staining pattern similar to AFRU. Five Mabs showed strong reactions in the SG but weak labeling of the RER. Mab 3B1 showed the label confined to the SG only. Our results suggest that: (i) in the bovine tissue, some epitopes are present in both precursor and processed materials, whereas others are characteristic of mature glycoproteins present in SG and the RF; (ii) the bovine SCO secretes at least two different compounds present in ependymal and hypendymal cells; (iii) both compounds coexist in the same secretory granule; (iv) there are conserved, class-specific, and species-specific epitopes in the glycoproteins secreted by the SCO of vertebrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01835155 | DOI Listing |
Anat Histol Embryol
January 2024
Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
The subcommissural organ (SCO) is a well-developed gland present in the brain of vertebrates. The SCO secretes glycoproteins into the circulating cerebrospinal fluid and these assemble to form Reissner's fibre. It also plays an important function in neurogenesis and axonal guidance during embryogenesis.
View Article and Find Full Text PDFC R Biol
April 2012
Equip Neurosciences, Pharmacology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, Marrakesh, Morocco.
The osmotic stress is a potent stimulus that can trigger several peripheral as well as central impairments. The brain is a vulnerable target of the osmotic stress and particularly circumventricular organs (CVOs) regarding their strategic localization as sensory organs of biochemical changes in the blood and cerebrospinal fluid circulations. The subcommissural organ (SCO) is a CVO which releases doubly in the CSF and blood circulation a glycoprotein called Reissner's fiber (RF) that has been associated to several functions including electrolyte and water balances.
View Article and Find Full Text PDFBrain Res
December 2006
Sezione di Anatomia veterinaria, Dipartimento di Scienze Biopatologiche ed Igiene delle Produzioni Animali ed Alimentari, Via San Costanzo, 4, 06126, Perugia, Italy.
In rabbits, the fasting-dependent reduction of LH secretion is likely mediated by leptin and estrogens via receptors in the brain. For the first time, using immunohistochemistry, the presence and regulation of receptors for leptin (Ob-R) and estradiol-17beta subtype alpha (ERalpha) were studied in the subcommissural organ (SCO) of rabbits, which were fed either ad libitum (control) or fasted for 48 h (treated) to verify whether this brain structure is a potential site of integration for metabolism and reproduction. In control rabbits, the cytoplasm of glial cells lining the SCO evidenced strong Ob-R immunoreactivity, whereas both ependymal and hypendymal cells of this glandular-like structure were negative.
View Article and Find Full Text PDFAnat Embryol (Berl)
March 2006
Department of Anatomy, Histology and Embryology, Semmelweis University of Medicine, Tuzoltó 58, 1094 Budapest, Hungary.
Anat Histol Embryol
August 2005
Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, Fuerteventura, Islas Canarias, Spain.
Subcommissural organ (SCO) secretory activity of the goat (variations of Capra hircus, that live in arid conditions) was examined during the postnatal development, using specific antibodies against the Reissner's fibre (AFRU) and angiotensin II (AAGII). The SCO was strongly stained with the anti-glycoproteins that form the Reissner's fibre and lightly marked with the anti-angiotensin II. The AFRU-immunoreactivity (ir) was found in the ependymal and hypendymal cells and in the ventricular and peripheral secretory routes of the goat SCO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!