Background: The study of plant populations is greatly facilitated by the deployment of chloroplast DNA markers. Asymmetric inheritance, lower effective population sizes and perceived lower mutation rates indicate that the chloroplast genome may have different patterns of genetic diversity compared to nuclear genomes. Convenient assays that would allow intraspecific chloroplast variability to be detected are required.
Results: Eukaryote nuclear genomes contain ubiquitous simple sequence repeat (microsatellite) loci that are highly polymorphic in length; these polymorphisms can be rapidly typed by the polymerase chain reaction (PCR). Using primers flanking simple mononucleotide repeat motifs in the chloroplast DNA of annual and perennial soybean species, we demonstrate that microsatellites in the chloroplast genome also exhibit length variation, and that this polymorphism is due to changes in the repeat region. Furthermore, we have observed a nonrandom geographic distribution of variations at these loci, and have examined the number and location of such repeats within the chloroplast genomes of other species.
Conclusions: PCR-based analysis of mononucleotide repeats may be used to detect both intraspecific and interspecific variability in the chloroplast genomes of seed plants. The analysis of polymorphic microsatellites thus provides an important experimental tool to examine a range of issues in plant genetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0960-9822(95)00206-5 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
Experimental Research Center, China Academy of Chinese Medical Sciences Beijing 100700, China.
The chloroplast genome is an important tool for studying plant classification, evolution, and the heterologous production of secondary metabolites and protein drugs. With advancements in sequencing technology and reductions in sequencing costs, chloroplast genome data have rapidly accumulated. However, existing chloroplast genome databases suffer from issues such as incomplete data, inadequate management, and inconsistent, inaccurate information, posing significant challenges for the development and utilization of the chloroplast genome.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Experimental Research Center,China Academy of Chinese Medical Sciences Beijing 100700, China.
With the development of molecular pharmacognosy, the advantages of DNA molecular markers in the identification of original plants of Chinese medicinal materials are becoming increasingly significant. To compensate for the limitations of existing markers in the quality supervision of Chinese medicinal materials, our team has independently designed a new molecular marker named DNA signature sequence(DSS). This marker is a nucleotide sequence that only appears in a specific taxonomic unit, with a length of 40 bp and high identification accuracy.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine Tianjin 301617, China.
Artemisiae Scoporiae Herba is derived from Artemisia scoparia or A. capillaris. The accurate identification of the herbs, particularly when dealing with bulk samples, is critical for ensuring the quality and efficacy of the medicinal product.
View Article and Find Full Text PDFEcol Evol
January 2025
Faculty of Agriculture and Life Science, Hirosaki University Hirosaki Aomori Japan.
Paper mulberry is a fiber resource for paper making. Washi, a traditional paper in Japan, has been produced from × , a hybrid between and . Elite strains have been vegetatively propagated and distributed within Japan.
View Article and Find Full Text PDFEcol Evol
January 2025
Functional Genomics Research Center, NTT Hi-Tech Institute Nguyen Tat Thanh University Ho Chi Minh City Vietnam.
L. 1754, a thorny deciduous tree of Fabaceae, contains various chemical compounds such as alkaloids, flavonoids, and triterpenoids and exhibits anti-depressant, anti-inflammatory, and antidiabetic activities. However, genomic data of are limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!