Hearing impairment is inherited most frequently as an autosomal recessive isolated clinical finding (non-syndromic hearing loss, NSHL). Extreme heterogeneity and phenotypic variability in the audiometric profile preclude pooling of affected families and severely hamper gene mapping by conventional linkage analysis. However, in instances of consanguinity, homozygosity mapping can be used to identify disease loci in small nuclear families. This report demonstrates the power of this technique by identifying a locus for recessive NSHL on 14q (DFNB4).

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/4.9.1643DOI Listing

Publication Analysis

Top Keywords

nuclear families
8
locus recessive
8
non-syndromic hearing
8
hearing loss
8
consanguineous nuclear
4
families identify
4
identify locus
4
recessive non-syndromic
4
loss 14q
4
14q hearing
4

Similar Publications

Genetic diversity and intercontinental dispersal of temperate and subarctic populations of Dibothriocephalus dendriticus (Cestoda; Diphyllobothriidea), a causative agent of dibothriocephalosis.

Int J Parasitol

January 2025

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic. Electronic address:

The diphyllobothriid tapeworm Dibothriocephalus dendriticus, one of the causative agents of the fish-borne zoonosis dibothriocephalosis, is mainly distributed in the Arctic/subarctic and temperate zones of the Northern Hemisphere (Europe, North America, and Asia), but also in the southern cone region of South America (Patagonia). The genetic structure and gene flow among 589 individuals of D. dendriticus, representing 20 populations, were studied using the mitochondrial cox1 gene as the first choice marker and 10 polymorphic nuclear microsatellite loci as a dominant molecular tool.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

[Advances in the study of viruses inhibiting the production of advanced autophagy or interferon through Rubicon to achieve innate immune escape].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:

The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.

View Article and Find Full Text PDF

As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning.

View Article and Find Full Text PDF

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!