Regulation of PHO4 nuclear localization by the PHO80-PHO85 cyclin-CDK complex.

Science

Department of Biochemistry and Biophysics, University of California at San Francisco, School of Medicine 94143-0448, USA.

Published: January 1996

PHO4, a transcription factor required for induction of the PHO5 gene in response to phosphate starvation, is phosphorylated by the PHO80-PHO85 cyclin-CDK (cyclin-dependent kinase) complex when yeast are grown in phosphate-rich medium. PHO4 was shown to be concentrated in the nucleus when yeast were starved for phosphate and was predominantly cytoplasmic when yeast were grown in phosphate-rich medium. The sites of phosphorylation on PHO4 were identified, and phosphorylation was shown to be required for full repression of PHO5 transcription when yeast were grown in high phosphate. Thus, phosphorylation of PHO4 by PHO80-PHO85 turns off PHO5 transcription by regulating the nuclear localization of PHO4.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.271.5246.209DOI Listing

Publication Analysis

Top Keywords

yeast grown
12
nuclear localization
8
pho80-pho85 cyclin-cdk
8
grown phosphate-rich
8
phosphate-rich medium
8
phosphorylation pho4
8
pho5 transcription
8
pho4
5
regulation pho4
4
pho4 nuclear
4

Similar Publications

One of the key events in DNA damage response (DDR) is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs), required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles and gluconeogenesis.

View Article and Find Full Text PDF

Upcycling of Enzymatically Recovered Amino Acids from Textile Waste Blends: Approaches for Production of Valuable Second-Generation Bioproducts.

ACS Sustain Resour Manag

January 2025

Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.

Tremendous quantities of textile waste generated and primarily landfilled annually represent a huge risk of contaminating the environment, together with loss of valuable resources. Especially, blended fabrics further pose a challenge for recycling and valorization strategies, while enzymatic hydrolysis offers a highly specific and environmentally friendly solution. In this study, we demonstrate that proteases specifically hydrolyze the wool components in blends with polyester, allowing recovery of pure polyester fibers as well as amino acids and peptides as platform molecules for further valorization.

View Article and Find Full Text PDF

Co-culture of Helicobacter pylori with oral microorganisms in human saliva.

Clin Oral Investig

January 2025

Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany.

Objective: Helicobacter pylori is known for colonizing the gastric mucosa and instigating severe upper gastrointestinal diseases such as gastritis, gastroduodenal ulcers, and gastric cancer. To date, there is no data available on the oral cavity as transmission site, whether H. pylori can survive in the oral cavity or in human saliva.

View Article and Find Full Text PDF

Comparative transcriptome analysis reveals pathogenic mechanisms of Colletotrichum gloeosporioides in figs (Ficus carica L.) infection.

Microb Pathog

January 2025

Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei,230036, China; School of Plant Protection, Anhui Agricultural University, Hefei,230036, China. Electronic address:

Colletotrichum gloeosporioides is a pathogen responsible for causing anthracnose in Ficus carica L. (figs) and other fruits worldwide. Various stages of infection have been reported in C.

View Article and Find Full Text PDF

Lactic acid in the vaginal milieu modulates the -host interaction.

Virulence

December 2025

Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T he Netherlands.

Vulvovaginal candidiasis (VVC) is one of the most common infections caused by . VVC is characterized by an inadequate hyperinflammatory response and clinical symptoms associated with colonization of the vaginal mucosa. Compared to other host niches in which can cause infection, the vaginal environment is extremely rich in lactic acid that is produced by the vaginal microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!