Background: In a subset of patients with metastatic melanoma, T lymphocytes bearing the cell-surface marker CD8 (CD8+ T cells) can cause the regression of even large tumors. These antitumor CD8+ T cells recognize peptide antigens presented on the surface of tumor cells by major histocompatibility complex (MHC) class I molecules. The MHC class I molecule is a heterodimer composed of an integral membrane glycoprotein designated the alpha chain and a noncovalently associated, soluble protein called beta2-microglobulin (beta 2m). Loss of beta 2m generally eliminates antigen recognition by antitumor CD8+ T cells.
Purpose: We studied the loss of beta 2m as a potential means of tumor escape from immune recognition in a cohort of patients receiving immunotherapy.
Methods: We successfully grew 13 independent tumor cell cultures from tumor specimens obtained from 13 patients in a cohort of 40 consecutive patients undergoing immunotherapy for metastatic melanoma and for whom tumor specimens were available. These cell lines, as well as another melanoma cell line (called 1074mel) that had been derived from tumor obtained from a patient in a cytokine-gene therapy study, were characterized in vitro cytofluorometrically for MHC class I expression and by northern and western blot analyses for messenger RNA (mRNA) and protein expression, respectively, and ex vivo by immunohistochemistry.
Results: After one melanoma cell line (1074mel) was found not to express functional beta 2m by cytofluorometric analysis, four (31%) of the 13 newly established melanoma cell lines were found to have an absolute lack of functional MHC class I expression. Northern blot analysis of RNA extracted from the five cell lines exhibiting no functional MHC class I expression showed that these cells contained normal levels of alpha-chain mRNA but variable levels of beta 2m mRNA. In addition, no immunoreactive beta 2m protein was detected by western blot analysis. When human beta 2m was transiently expressed with the use of a recombinant vaccinia virus, cell-surface MHC class I expression was reconstituted and the ability of these five cell lines to present endogenous antigens was restored. Immunohistochemical staining of tumor sections revealed a lack of immunoreactive MHC class I in vivo, supporting the notion that the in vitro observations were not artifactual. Furthermore, archival tumor sections obtained from patients prior to immunotherapy were available from three patients and were found to be beta 2m positive. This result was consistent with the hypothesis that loss of beta 2m resulted from immunotherapy.
Conclusions: These data suggest that the loss of beta 2m may be a mechanism whereby tumor cells can acquire immunoresistance. This study represents the first characterization of a molecular route of escape of tumors from immune recognition in a cohort of patients being treated with immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248456 | PMC |
http://dx.doi.org/10.1093/jnci/88.2.100 | DOI Listing |
Am J Clin Exp Immunol
December 2024
Department of Surgery, Medical Faculty, Trakia University Stara Zagora, Bulgria.
Tertiary lymphoid structures (TLS), formerly recognized as Crohn's-like structures, serve as crucial biomarkers for evaluating the progression of colorectal cancer (CRC). Understanding their spatial distribution, cellular composition, and interactions within CRC is paramount for comprehending the immune response in the tumor microenvironment (TME). TLS are comprised of a T-cellular compartment and a B-cellular compartment, the latter encompassing follicular dendritic cells (FDCs), high endothelial venules (HEVs), and lymphatic vessels.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
Wayne State University, Division of Pulmonary, Critical Care and Sleep Medicine, Detroit, Michigan, United States;
Numerous chronic human disorders are associated with immune activation by obscure antigen(s). We identified a novel sarcoidosis-epitope (ChainA) by immunoscreening of a novel T7 phage library and confirmed an abundance of ChainA IgG-antibody in sarcoidosis. We tested whether ChainA epitope elicits immune responses through B-cell activation, plasma cell differentiation and antibody production.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Introduction: Human Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) insufficiency caused by heterozygous germline mutations in is a complex immune dysregulation and immunodeficiency syndrome presenting with reduced penetrance and variable disease expressivity, suggesting the presence of disease modifiers that trigger the disease onset and severity. Various genetic and non-genetic potential triggers have been analyzed in CTLA-4 insufficiency cohorts, however, none of them have revealed a clear association to the disease. Multiple HLA haplotypes have been positively or negatively associated with various autoimmune diseases and inborn errors of immunity (IEI) due to the relevance of MHC in the strength of the T cell responses.
View Article and Find Full Text PDFCell Host Microbe
January 2025
Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA. Electronic address:
Here, we explore the relationship between dietary fibers, colonic epithelium major histocompatibility complex class II (MHC-II) expression, and immune cell interactions in regulating susceptibility to Clostridioides difficile infection (CDI). We find that a low-fiber diet increases MHC-II expression in the colonic epithelium, which, in turn, worsens CDI by promoting the development of pathogenic CD4 intraepithelial lymphocytes (IELs). The influence of dietary fibers on MHC-II expression is mediated by its metabolic product, acetate, and its receptor, free fatty acid receptor 2 (FFAR2).
View Article and Find Full Text PDFClin Epigenetics
January 2025
School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!