Recently, a cyclic peptide ligand, cyclo-Ac-[CHPQG-PPC]-NH2, that binds to streptavidin with high affinity was discovered by screening phage libraries. From the streptavidin-bound crystal structures of cyclo-Ac-[CHPQGPPC]-NH2 and of a related but more weakly binding linear ligand, FSHPQNT, we designed linear thiol-containing streptavidin binding ligands, FCH-PQNT-NH2 and Ac-CHPQNT-NH2, which are dimerized catalytically by the streptavidin crystal lattice of space group I222, as demonstrated by high performance liquid chromatography and mass spectrometry. The catalytic dimerization relies on presentation of the ligand thiols toward one another in the lattice. The streptavidin crystal lattice-mediated catalysis achieved by structure-based design is the first example of catalysis of a chemical reaction by a protein crystal lattice. The spontaneous and crystal catalyzed rates of disulfide formation were determined by high performance liquid chromatography at pH 3.1, 4.0, 5.0, and 6.0. The ratio of the catalyzed to uncatalyzed rate was maximal at pH 3.1 (kcat/kuncat = 3.8), diminishing to 1.2 at pH 6.0. The crystal structures of the streptavidin-bound dimerized peptide ligands, FCHPQNT-NH2 dimer at 1.95 A and Ac-CHPQNT-NH2 dimer at 1.80 A, are described and compared with the structures of streptavidin-bound FSHPQNT monomer and cyclo-Ac-[CHPQGPPC]-NH2 dimer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.52.31210 | DOI Listing |
Mikrochim Acta
January 2025
USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Ternary heterojunction BiS/MoS/BiMoO was designed as a signal probe to develop a dual signal amplification strategy empowered electrochemical biosensor for sensitive miRNA-21 detection by combining with catalytic hairpin assembly (CHA). The combination of the BiS/MoS/BiMoO heterojunction as a tracer indication probe and the CHA amplification strategy not only took fully use of the highly dense nanowire interwoven structure and superior active region of the probe, but also endowed the ability to improve the molecular hybridization efficiency by collision, which significantly avoided the cumbersome chain design and greatly simplified the step-by-step construction of the electrode surface. Hairpin H1 was first added dropwise to the gold nanoparticle-decorated electrode surface, and then opened by the introduced miRNA-21 to initiate the specific hybridization.
View Article and Find Full Text PDFChem Asian J
January 2025
Shanghai University, Materials Genome Institute, Nanchen Road 333, 200444, Shanghai, CHINA.
MXene, a two-dimensional nanomaterial, has metal conductivity, high electronegativity, functionalized with surface groups, which makes them has wide applications in catalysis and biosensing. However, studies on the principle of enhanced electro-chemiluminescence (ECL) by MXene composites and the improvement of their performance in catalyzing the ECL reaction are still in their infancy. In this study, gold nanoparticles (AuNPs) are obtained by mild reductive reduction and loaded in situ on the Ti3C2Tx MXene surface to form the composites (AuNPs@MXene).
View Article and Find Full Text PDFChembiochem
January 2025
Fuzhou University College of Chemistry, chemistry, CHINA.
N-glycosides exhibit diverse biological and pharmacological activities, making their efficient synthesis crucial for both biological research and drug development. Traditional acid-promoted N-glycosylation methods, which rely on the formation of oxocarbenium intermediates, often face significant challenges. These methods are water-sensitive and typically require neighboring group participation to achieve high selectivity.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
The utilization of 2D materials as catalysts has garnered significant attention in recent years, primarily due to their exceptional features including high surface area, abundant exposed active sites, and tunable physicochemical properties. The unique geometry of 2D materials imparts them with versatile active sites for catalysis, including basal plane, interlayer, defect, and edge sites. Among these, edge sites hold particular significance as they not only enable the activation of inert 2D catalysts but also serve as platforms for engineering active sites to achieve enhanced catalytic performance.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
We report a directing group (DG)-enabled strategy for polyamide depolymerization. Pyridine-based DGs selectively interact with In(III) catalysts, activating amide bonds for catalytic cleavage via alcoholysis. The process achieves efficient depolymerization of DG-introduced polyamides into recyclable monomers, providing a sustainable chemical recycling approach for robust polyamides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!