We recorded cortical magnetic signals, simultaneously over the whole scalp, from 6 healthy subjects during 3 motor tasks to track the varying proportion of contra- vs. ipsilateral activation. The subjects performed self-paced index finger flexions, simultaneous flexion of 4 fingers, and a sequence of rapid digit movements in different sessions. Index finger and 4-finger movements were associated with phasic bilateral dampening of spontaneous 10 and 20 Hz rhythms along the central sulcus, starting approximately 1 sec before the movement in the contralateral hemisphere. A rebound occurred within 1 sec after the index finger and 4-finger flexions; the rapid finger movements resulted in a persistent blocking of the rhythms. Averaging with respect to movement onset showed a slow bilateral frontal readiness field starting about 0.5 sec prior to motion onset. It was followed, within 200 msec after movement onset, by phasic movement-evoked fields (MEFs) which were bilateral during the tasks involving several fingers. The contra- vs. ipsilateral MEF amplitude ratio C/I decreased from 4.0 during index finger movements to 0.6 during rapid finger flexions, reflecting the enhanced activation of the ipsilateral primary somatomotor cortex with increasing complexity of movement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0013-4694(95)00193-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!