Of significance in the routine use of BIAcore is the cost of the sensor chips. This is particularly evident during the phase of method development of an assay where it is not unusual to expend several chips in a day in attempts to optimize immobilization conditions for a novel peptide or protein. In addition, it is accepted practice to discard a chip once its ligand binding capacity has diminished to an unacceptable level. While the high cost of sensor chips has been addressed to some degree through the recent introduction of research-grade sensor chips, we were interested in assessing the possibility of regenerating or reconditioning sensor chips in order to allow them to be reused. In particular, we concerned ourselves with regenerating sensor chips onto which peptide or protein had been immobilized. Our aim was to develop a general procedure that would allow reuse of such chips but would not decrease ligand immobilization capacity or increase nonspecific ligand adsorption properties. We present a method which employs a combination of enzymatic (Pronase E) and chemical (bromoacetic acid) treatments of used sensor chips. Regeneration requires an overnight incubation of the sensor chip ex situ so that one can continue to perform BIAcore experiments. The data demonstrate that this simple two-step procedure substantially removes immobilized proteins such as IgG, Protein G, an HIV-1 envelope glycoprotein (gp 120) and a neoglycoprotein based on bovine serum albumin, as determined by reflectance measurements and X-ray photoelectron spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1006/abio.1995.1386DOI Listing

Publication Analysis

Top Keywords

sensor chips
28
chips
9
sensor
8
cost sensor
8
peptide protein
8
general method
4
method recondition
4
recondition reuse
4
reuse biacore
4
biacore sensor
4

Similar Publications

The optical properties of the 1D nanograting chip have been explored based on computational and experimental studies. Dispersion curve analysis demonstrates cavity and surface plasmon modes in the 1D nanograting chips with periods of 400 nm and 800 nm. In this grating period range, the cut-off period is at a grating period of 644 nm under excitation with a wavelength of 670 nm.

View Article and Find Full Text PDF

Surface-Sensitive Waveguide Imaging for In Situ Analysis of Membrane Protein Binding Kinetics.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.

View Article and Find Full Text PDF

Generally, the electrocardiography (ECG) system plays an important role in preventing and diagnosing heart diseases. To further improve the amenity and convenience of using an ECG system, we built a customized capacitive electrocardiography (cECG) system with one wet electrode, sixteen non-contact electrodes, two ADS1299 chips, and one STM32F303-based microcontroller unit (MCU). This new cECG system could acquire, save, and display the ECG data in real time.

View Article and Find Full Text PDF

Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss.

View Article and Find Full Text PDF

Design and Application of Uniaxially Sensitive Stress Sensor.

Micromachines (Basel)

January 2025

State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China.

Current stress sensors for microsystems face integration challenges and complex signal decoding. This paper proposes a real-time uniaxially sensitive stress sensor. It is obtained by simple combinations of bar resistors using their sensitivity differences in different axes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!