Several IgE heavy (H) chain transcripts are produced by alternative splicing between constant region (CH3 and CH4) and membrane (M1 and M2) exons and by differential cleavage-polyadenylation at poly(A) sites downstream of the CH4 and M2 exons. We have now characterized the poly(A) signal of the epsilon transcripts that contain membrane exon sequences (epsilon CH4-M1'-M2, epsilon CH4-M1-M2, epsilon CH4-M2' and epsilon CH4-M2") and have determined the complete sequence of the M2 exon and 1.4 kb of downstream genomic DNA. The membrane locus poly(A) site was identified by RACE-PCR analysis of epsilon transcripts obtained from IgE-producing myeloma cells and normal peripheral blood lymphocytes (PBL). All membrane exon transcripts were found to be polyadenylated following a CA dinucleotide located 1046 nt from the beginning of the M2 exon. An AGTAAA hexamer, located 13 nt upstream from the site of cleavage and polyadenylation, was the only poly(A) signal sequence present in the 1.4 kb of genomic DNA downstream of the M2 exon. A (G+T)-rich region, which is also conserved in most poly(A) signals, was present 50 nt downstream of the AGTAAA hexamer. Northern blot analysis confirmed that this poly(A) site is used by the membrane exon epsilon mRNAs expressed by the U266 myeloma. The four membrane exon transcripts were detected in different relative amounts in PBL and IgE-producing myeloma cells, which could reflect different epsilon mRNA splicing patterns during B-cell differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC307468 | PMC |
http://dx.doi.org/10.1093/nar/23.23.4805 | DOI Listing |
Pediatr Nephrol
January 2025
Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
Background: Steroid-resistant nephrotic syndrome (SRNS) is insensitive to steroid therapy and overwhelmingly progresses to kidney failure (KF), the known pathogenic genes of which include key subunits of the nuclear pore complex (NPC), a less-recognized contributor to glomerular podocyte injury.
Methods: After analyzing their clinical characterizations and obtaining parental consent, whole-exome sequencing (WES) was performed on patients with SRNS. Several nucleoporin (NUP) biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing from white cells of peripheral blood, minigene assay, immunohistochemical (IHC) staining, and electron microscopy (EM) ultrastructure observation of kidney biopsy, as well as multiple in silico prediction tools, including 3D protein modeling.
Int J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria.
bioRxiv
December 2024
Department of Biological Sciences, University of Delaware, Newark, DE.
Mammalian red blood cells are generated via a terminal erythroid differentiation pathway culminating in cell polarization and enucleation. Actin filament polymerization is critical for enucleation, but the molecular regulatory mechanisms remain poorly understood. We utilized publicly available RNA-seq and proteomics datasets to mine for actin-binding proteins and actin-nucleation factors differentially expressed during human erythroid differentiation and discovered that a focal adhesion protein-Tensin-1-dramatically increases in expression late in differentiation.
View Article and Find Full Text PDFClin Genet
January 2025
Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Coxsackie and adenovirus receptor-like membrane protein (CLMP) mutation is identified as a genetic risk factor of congenital short bowel syndrome (CSBS). However, the specific pathogenic mechanism remains unclear. This study aimed to explore the clinical manifestations, genetic characteristics, and molecular mechanisms underlying CSBS caused by CLMP mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!