Gingival fibroblasts function as accessory immune cells and are capable of synthesizing cytokines in response to lipopolysaccharides (LPS) from Gram-negative microbes. Recently, we have isolated, cloned, and characterized two cell lines which exhibit characteristics of periodontal ligament (PDL) cells. In this report, we demonstrate that PDL cells showing osteoblast-like phenotype are not LPS-responsive cells. However, treatment of PDL cells with tumor necrosis factor-alpha (TNF-alpha) inhibits the expression of their osteoblast-like characteristics. As a consequence of this TNF-alpha-induced phenotypic change, PDL cells become LPS-responsive, i.e., synthesize several pro-inflammatory cytokines in response to LPS. These phenotypic changes occur at concentrations of TNF-alpha that are frequently observed in tissue exudates during periodontal inflammation, suggesting a physiological significance for these in vitro observations. It is of interest that TNF-alpha-induced phenotypic changes in PDL cells are transient, since removal of rhTNF-alpha from the supernatants of PDL cell cultures results in re-acquisition of the osteoblast-like characteristics and lack of LPS responsiveness of PDL cells. These results suggest that TNF-alpha, by regulating the PDL cell functions, may allow these cells to participate in the disease process as accessory immune cells at the expense of their structural properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/00220345950740111401 | DOI Listing |
Front Immunol
January 2025
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Background And Aim: NK cells and NK-cell-derived cytokines were shown to regulate neutrophil activation in acute lung injury (ALI). However, the extent to which ALI regulates lung tissue-resident NK (trNK) activity and their molecular phenotypic alterations are not well defined. We aimed to assess the impact of 1,25-hydroxy-vitamin-D3 [1,125(OH)D] on ALI clinical outcome in a mouse model and effects on lung trNK cell activations.
View Article and Find Full Text PDFHum Pathol
January 2025
Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland.
Colorectal carcinoma brain metastases (n=60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.
View Article and Find Full Text PDFJ Proteomics
January 2025
Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
Periodontal disease affects over 1 billion people globally. This study investigated how periodontitis affects the protein profile of the periodontal ligament (PDL) in rats. Eight Holtzman rats were divided into the control and experimental periodontitis groups.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!