Tropomyosins comprise a family of actin-binding proteins that are central to the control of calcium-regulated striated muscle contraction. To understand the functional role of tropomyosin isoform differences in cardiac muscle, we generated transgenic mice that overexpress striated muscle-specific beta-tropomyosin in the adult heart. Nine transgenic lines show a 150-fold increase in beta-tropomyosin mRNA expression in the heart, along with a 34-fold increase in the associated protein. This increase in beta-tropomyosin message and protein causes a concomitant decrease in the level of alpha-tropomyosin transcripts and their associated protein. There is a preferential formation of the alpha beta-heterodimer in the transgenic mouse myofibrils, and there are no detectable alterations in the expression of other contractile protein genes, including the endogenous beta-tropomyosin isoform. When expression from the beta-tropomyosin transgene is terminated, alpha-tropomyosin expression returns to normal levels. No structural changes were observed in these transgenic hearts nor in the associated sarcomeres. Interestingly, physiological analyses of these hearts using a work-performing model reveal a significant effect on diastolic function. As such, this study demonstrates that a coordinate regulatory mechanism exists between alpha- and beta-tropomyosin gene expression in the murine heart, which results in a functional correlation between alpha- and beta-tropomyosin isoform content and cardiac performance.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.51.30593DOI Listing

Publication Analysis

Top Keywords

striated muscle
8
beta-tropomyosin
8
beta-tropomyosin adult
8
murine heart
8
increase beta-tropomyosin
8
associated protein
8
beta-tropomyosin isoform
8
alpha- beta-tropomyosin
8
expression
5
molecular physiological
4

Similar Publications

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Background: Herein, we aimed to examine the relationship between sarcopenia, neutrophil-lymphocyte ratio (NLR), Charlson comorbidity index (CCI), and prognostic nutritional index (PNI) in patients with superficial esophageal carcinoma who underwent definitive chemoradiotherapy (CRT).

Methods: We retrospectively analyzed 100 patients (87 males) diagnosed with cT1N0M0 esophageal squamous cell carcinoma. The included patients underwent CRT as an initial treatment.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are non-canonical secondary nucleic acid structures found in the transcriptome. They play crucial roles in gene regulation by interacting with G4-binding proteins (G4BPs) in cells. rG4-G4BP complexes have been associated with human diseases, making them important targets for drug development.

View Article and Find Full Text PDF

Selective Neurectomy with Regenerative Peripheral Nerve Interface Surgery for Facial Synkinesis.

Facial Plast Surg Aesthet Med

January 2025

Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA.

Selective neurectomy (SN) typically leaves cut nerve endings to be either free-floating or buried in facial muscles. Regenerative peripheral nerve interfaces (RPNIs) use autologous skeletal muscle grafts to provide a nonfacial muscle target for reinnervation. To evaluate the effectiveness of RPNI surgery with SN for improving postoperative facial function through botulinum toxin use and facial movement metrics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!