This paper describes properties of a novel family of aromatic isothiouronium derivatives, which act as Na(+)-like competitive antagonists on renal Na/K-ATPase. The derivatives are reversible competitors of Rb+ and Na+ occlusion. Ki values of the most potent compounds, 1-bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU) and 1,3-dibromo-2,4,6-tris(methylisothiouronium)benzene(Br2-TITU ), 0.65 and 0.32 microM, respectively, are 15-30-fold lower than Ki values of the bis-guanidinium derivatives described previously (David, P., Mayan, H., Cohen, H., Tal, D. M., and Karlish, S. J. D. (1992) J. Biol. Chem. 267, 1141-1149), and represent the lowest reported values for cation antagonists. Using fluorescein-labeled Na/K-ATPase, all derivatives have been shown to stabilize the E1 conformation when bound at high affinity sites (i.e. they are sodium-like). In addition, in one condition (10 mM Tris-HCl, pH 8.1), high concentrations of Br-TITU (KD approximately 10 microM) appear to stabilize an E2 conformation. We propose a model which allows for simultaneous binding of the antagonists to high affinity cytoplasmic sites and low affinity sites, which may be at the extracellular surface. Blockage of cation occlusion by the isothiouronium derivatives at the cytoplasmic surface probably occurs at the entrance to the occlusion sites, which is recognized both by Na+ antagonists and by Na+ or K+ ions. Unlike the alkali metal cations, the Na+ antagonists are not occluded or transported (see also Or, E., David, P., Shainskaya, A., Tal, D. M., and Karlish, S. J. D. (1993) J. Biol. Chem. 268, 16929-16937). The isothiouronium derivatives appear to be promising candidates for further development as affinity labels of cation binding domains, for kinetic analysis of isoforms or mutated Na/K pumps, or as probes of other cation transport proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.50.29788 | DOI Listing |
Angew Chem Int Ed Engl
November 2024
EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
The development of methods for the selective acylative kinetic resolution (KR) of tertiary alcohols is a recognised synthetic challenge with relatively few successful substrate classes reported to date. In this manuscript, a highly enantioselective isothiourea-catalysed acylative KR of tertiary pyrazolone alcohols is reported. The scope and limitations of this methodology have been developed, with high selectivity observed across a broad range of substrate derivatives incorporating varying substitution at N(2)-, C(4)- and C(5)-, as well as bicyclic constraints within the pyrazolone scaffold (30 examples, selectivity factors (s) typically >100) at generally low catalyst loadings (1 mol %).
View Article and Find Full Text PDFBioorg Chem
March 2024
Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt. Electronic address:
As regards to the structural analysis and optimization of diverse potential EGFR inhibitors, two series of imidazolyl-2-cyanoprop-2-enimidothioates and ethyl imidazolylthiomethylacrylates were designed and constructed as potential EGFR suppressors. The cytotoxic effect of the prepared derivatives was assessed toward hepatic, breast, and prostate cancerous cells (Hep-G2, MCF-7, and PC-3). Three derivatives 3d, 3e, and 3f presented potent antiproliferative activity and selectivity against the examined tumor cells showing IC values at low micromolar levels.
View Article and Find Full Text PDFBioorg Chem
March 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26100, Turkey.
Inflammation is a complex set of interactions that can occur in tissues as the body's defensive response to infections, trauma, allergens, or toxic compounds. Therefore, in almost all diseases, it can be observed because of primary or secondary reasons. Since it is important to control and even eliminate the symptoms of inflammation in the treatment of many diseases, anti-inflammatory and analgesic drugs are always needed in the clinic.
View Article and Find Full Text PDFMar Drugs
March 2023
Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
The JAK/STAT3 signaling pathway is aberrantly hyperactivated in many cancers, promoting cell proliferation, survival, invasiveness, and metastasis. Thus, inhibitors targeting JAK/STAT3 have enormous potential for cancer treatment. Herein, we modified derivatives by introducing the isothiouronium group, which can improve the antitumor activity of the compounds.
View Article and Find Full Text PDFInt J Mol Sci
February 2022
Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
Hyperactivation of Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling is an attractive therapeutic target for tumor therapy. Herein, forty-eight novel meridianin derivatives were designed and synthesized, and their antitumor activity was evaluated in vitro both for activity optimization and structure-activity relationship (SAR) study. The results indicated that most derivatives exhibited significantly improved antitumor activity, especially for compound .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!