The genes for the bHLH-Zip transcription factors Tfap4, Mxi1, Tcfeb, Usf1, and Usf2 have been mapped in mouse by interspecific backcross analysis. Mxi1, Usf1, and Usf2 have been mapped previously by in situ hybridization, but their positions on the meiotic linkage map had not been determined. The other two genes have not previously been mapped in mouse. These transcription factors belong to a growing family of transcriptional regulators, some of which are known to form a complex network of interacting proteins that control cell proliferation and apoptosis. As expected, based on mapping studies of other bHLH-Zip genes, these loci were well distributed among mouse chromosomes. In addition, some of the probes used in this study detected multiple, independently segregating loci, suggesting the possible existence of additional family members or species-specific pseudogenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/geno.1995.1129 | DOI Listing |
J Cancer
October 2024
Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China.
Nasopharyngeal carcinoma (NPC) is a common malignancy in Southeast Asia, and in the Guangxi and Guangdong provinces of China. The spermatogenic transcription factor zip 1 (SPZ1) is a member of bHLH zip family, and promotes tumorigenesis in the liver, colon and breast tissues. However, the role of SPZ1 in the progression of NPC is unclear.
View Article and Find Full Text PDFNat Commun
July 2024
Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
Tumor cells reprogram their metabolism to produce specialized metabolites that both fuel their own growth and license tumor immune evasion. However, the relationships between these functions remain poorly understood. Here, we report CRISPR screens in a mouse model of colo-rectal cancer (CRC) that implicates the dual specificity phosphatase 18 (DUSP18) in the establishment of tumor-directed immune evasion.
View Article and Find Full Text PDFExp Mol Med
February 2024
Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
Microphthalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine zipper transcription factor (bHLH-Zip), has been identified as a melanocyte-specific transcription factor and plays a critical role in melanocyte survival, differentiation, function, proliferation and pigmentation. Although numerous studies have explained the roles of MITF in melanocytes and in melanoma development, the function of MITF in the hematopoietic or immune system-beyond its function in melanin-producing cells-is not yet fully understood. However, there is convincing and increasing evidence suggesting that MITF may play multiple important roles in immune-related cells.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2023
Department of Chemical Technology, University of Calcutta, Kolkata, India.
De-regulation of oncogenic myelocytomatosis (c-Myc or Myc) transcription factor is one of the most common molecular anomalies encountered in human cancers, and it is typically linked to many aggressive malignancies including breast, lung, cervix, colon glioblastomas, and other haematological organs. The Myc belongs to the basic helix-loop-helix zipper protein family (bHLH-ZIP), and its dimerization with another principal interactor protein partner Myc-associated factor X (Max) is essentially required for cellular transformation, cell growth and proliferation, and transcriptional activation. Intermolecular interactions have been evaluated between hetero-dimer Myc-Max protein, which identified protein-protein interaction (PPI) specific modulators using highly précised molecular docking study followed by long-range interaction stability analyzed through molecular dynamic (MD) simulation.
View Article and Find Full Text PDFGene
February 2024
Laboratory of Molecular Nutrition, Fishery College, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
SREBPs, such as SREBP1 and SREBP2, were the key transcriptional factors regulating lipid metabolism. The processing of SREBPs involved many genes, such as scap, s1p, s2p, cideb. Here, we deciphered the full-length cDNA sequences of scap, srebp1, srebp2, s1p, s2p, cideb and cidec from yellow catfish Pelteobagrus fulvidraco.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!