Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Embryonic skeletal muscle development has become a paradigm for understanding the molecular basis of how cell lineages are established and how cells differentiate into specialized structures. Most vertebrate muscles are derived from individual somites that produce two distinct muscle populations: the myotomal muscles that generate the axial and trunk musculature and a second migratory cell population that colonizes regions of the developing limbs. In both instances, muscle differentiation is accompanied by cell cycle arrest, fusion of individual myoblasts into multinucleate myotubes, and the transcriptional activation of muscle-specific genes. Recent experimental progress has led to greater understanding of the molecular mechanisms that control myogenesis in the embryo. Most of the advances have come from the identification and isolation of regulatory genes that are involved in controlling specific transcriptional events. In particular, the muscle regulatory factor (MRF) and myocyte enhancer factor 2 (MEF2) families have been implicated in establishing the myogenic lineage as well as controlling terminal differentiation. Two additional transcription factors, Pax-3 and MLP, also appear to play a role in the production of a mature muscle cell. This review focuses on these four vertebrate transcription factor families and discusses the experimental evidence that these factors play important, non-overlapping roles in regulating skeletal muscle development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fasebj.9.15.8529839 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!