Cathepsin D activity and protein degradation products in organs and blood during experimental declamping shock.

Rocz Akad Med Bialymst

Department of Vascular Surgery and Transplantology, Medical Academy of Białystok.

Published: January 1996

Aortic cross-clamping in dogs for 60 min causes an increase in cathepsin D activity in the kidney, liver, lung, heart, skeletal muscle and the blood serum. It causes no changes in the content of protein and its degradation products of the examined organs, apart from the lungs, where the above parameters are higher. The intensity of the observed changes in the kidney and other organs does not depend on the level of aortic cross-clamping (above or below renal arteries).

Download full-text PDF

Source

Publication Analysis

Top Keywords

cathepsin activity
8
protein degradation
8
degradation products
8
aortic cross-clamping
8
activity protein
4
products organs
4
organs blood
4
blood experimental
4
experimental declamping
4
declamping shock
4

Similar Publications

The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is marked by extracellular beta-amyloid (Aβ) plaques and intracellular Tau tangles, leading to progressive cognitive decline and neuronal dysfunction. Impaired autophagy, a process by which a cell breaks down and destroys damaged or abnormal proteins and other substances, contributes to AD progression. This study investigated Nuclear Receptor Subfamily 1 Group D Member 1 (NR1D1) as a potential therapeutic target for modulating autophagy.

View Article and Find Full Text PDF

Discovery of a Potent Triazole-Based Reversible Targeted Covalent Inhibitor of Cruzipain.

ACS Med Chem Lett

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven 3000, Belgium.

Cruzipain (CZP) is an essential cysteine protease of , the etiological agent of Chagas disease, and a promising druggable target. To date, no CZP inhibitors have reached clinical use, with research efforts mostly hampered by insufficient potency, limited target selectivity or lack of bioactivity translation from the isolated enzyme to the parasite in cellular environments. In this study, we report the design of , a 1,2,3-triazole-based targeted covalent inhibitor with nanomolar potency (IC = 28 nM) and null inhibition of human cathepsin L.

View Article and Find Full Text PDF

This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!