Native platelet factor-4 (PF4) is an asymmetrically associated, homo-tetrameric protein (70 residues/subunit) known for binding polysulphated glycosaminoglycans like heparin. PF4 N-terminal chimeric mutant M2 (PF4-M2), on the other hand, forms symmetric tetramers [Mayo, Roongta, Ilyina, Milius, Barker, Quinlan, La Rosa and Daly (1995) Biochemistry 34, 11399-11409] making NMR studies with this 32 kDa protein tractable. PF4-M2, moreover, binds heparin with a similar affinity to that of native PF4. NMR data presented here indicate that heparin (9000 Da cut-off) binding to PF4-M2, while not perturbing the overall structure of the protein, does perturb specific side-chain proton resonances which map to spatially related residues within a ring of positively charged side chains on the surface of tetrameric PF4-M2. Contrary to PF4-heparin binding models which centre around C-terminal alpha-helix lysines, this study indicates that a loop containing Arg-20, Arg-22, His-23 and Thr-25, as well as Lys-46 and Arg-49, are even more affected by heparin binding. Site-directed mutagenesis and heparin binding data support these NMR findings by indicating that arginines more than C-terminal lysines, are crucial to the heparin binding process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1136271PMC
http://dx.doi.org/10.1042/bj3120357DOI Listing

Publication Analysis

Top Keywords

heparin binding
16
platelet factor-4
8
site-directed mutagenesis
8
heparin
7
binding
7
binding platelet
4
nmr
4
factor-4 nmr
4
nmr site-directed
4
mutagenesis study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!